2021 3rd International Conference on Computer Communication and the Internet

(ICCCCI)

June 25-27, 2021
Nagoya, Japan
2021 3rd International Conference on Computer Communication and the Internet (ICCCI)

Table of Contents

Preface... vii
Conference Committee ... viii

♦ Intelligent Image Processing and Method

EfficientNet Based Iris Biometric Recognition Methods with Pupil Positioning by U-Net....................... 1
Cheng-Shun Hsiao, Chih-Peng Fan

White Balance Color Correction Based on MICRO LED Display Panel... 6
Shih-Chang Hsia, Chun-Jung Liao

Three Dimensional Light Detection and Ranging Decoder Design... 10
Sheng-Bi Wang, Yu-Cheng Fan

Improving Face Recognition Using Pre-trained Models for Mask Wearer Images .. 15
Masaki Hongo, Tomio Goto

Video-Based Facial Recognition Develop for Accurately Identify People Wearing Surgical Masks 19
Chanate Ratanaubol, Panita Wannapiroon, Prachyanun Nilsook

Alpha Beta Pruned UNet – A Modified UNet Framework to Segment MRI Brain Image to Analyse the Effects of CNTNAP2 Gene towards Autism Detection.. 23
Nagashree N, Premjyoti Patil, Shantakumar Patil, Mallikarjun Kokatanur

♦ Network Resource Allocation and Management

QoE Assessment of Human Perception of Softness in Networked Haptic Virtual Environment............... 27
May Zin Oo, Yutaka Ishibashi, Khin Than Mya

UAV-Assisted Resource Allocation Strategy in Energy Harvesting Edge Computing System..................... 32
Lijia Tao, Yisheng Zhao, Xinya Xu, Zhimeng Xu

Towards a Multi-Label Dataset of Internet Traffic for Digital Behavior Classification............................. 38
Wenbin Li, Gaspard Quenard
Traffic Prediction and Resource Allocation Based on Deep Bidirectional LSTM in Data Center Networks ..

Yonghuai Wang

Resource Allocation Strategy for Dual UAVs-Assisted MEC System with Hybrid Solar and RF Energy Harvesting ..52

Xinya Xu, Yisheng Zhao, Lijia Tao, Zhimeng Xu

Switching Scheme between Adaptive Viscosity Control and Stabilization Control by Viscosity in Remote Control System with Haptics ..58

Lu CHEN, Yutaka ISHIBASHI, Pingguo HUANG, Yuichiro TATEIWA

Network and Information Security

Intrusion Detection Method Based on Sparse Autoencoder ..63

Yuqi Li, Pan Gao, Zhijun Wu

Research on Single Sign-on Technology for Educational Administration Information Service Platform 69

Tao Huang, FangMing Guo

Data Offloading in Heterogeneous Dynamic Fog Computing Network: A Contextual Bandit Approach 73

Yuchen Shan, Hui Wang, Zihao Cao, Kozyrev Yury

Analyzing Cyber Crimes during COVID-19 Time in Indonesia ..78

Abdul Hanief Amarullah, Arthus Josias Simon Runturambi, Bondan Widiawan

The Architecture Design for Publicizing Digital Competence to Online Job Market84

Sukosol Wanotayapitak, Kobkhat Saraubon, Prachyanun Nilsook

Content-Based Technical Solution for Cyberstalking Detection ..89

Audrey Asante, Xiaohua Feng

Built-in Encrypted Health Cloud Environment for Sharing COVID-19 Data ..96

Mohammed Y. Shakor, Nigar M. Shafiq Surameery

A Heterogeneous Graph Attention Network-Based Web Service Link Prediction102

Wenhui He, Chunhe Xia, Zhong Li, Xiaochen Liu, Tianbo Wang

Wireless Communication and Technology

Performance Evaluation on Concurrent Connecting QUIC and TCP Nodes over Wireless LAN 109

Nobuo Aoki, Kohei Okazaki, Hiroyasu Obata, Junichi Funasaka

An Innovative High-Frequency Wireless Communication Technique Inspired by Multi-Frequency Carrier Signals ..117

Prashnatita Pal, Bikash Chandra Sahana, Jayanta Poray
Electronics and Signal Processing

Speech Steganalysis Based on Multi-classifier Combination... 157

Chenlei Zhang, Junjun Guo

End-to-End Model Based on RNN-T for Kazakh Speech Recognition... 163

Orken Mamyrbayev, Dina Oralbekova, Aizat Kydyrbekova, Tolganay Turdalykyzy, Akbayan Bekarystankzy

Using Semi-personalized Loudness Difference for Improved Surround Sound Rendered by Headphones ... 168

Shingchern D. You, Fan-Hao-Chi Fang

An Efficient RAID6 System Based on XOR Accelerator .. 171

Ruizhen Wu, Yan Wu, Mingming Wang, Lin Wang

Enhancing Power Added Efficiency of Doherty Amplifier by Changing Power Ratio of Carrier Amplifier and Peak Amplifier .. 176

Guanyu Mu, Hitoshi Hayashi

Comparison of Stabilization Control for Writing Characters in Remote Robot System with Force Feedback ... 180

Ruzhou Ye, Yutaka Ishibashi, Pingguo Huang, Yuichiro Tateiwa
ViT-GAN: Using Vision Transformer as Discriminator with Adaptive Data Augmentation .. 185

 Shota HIROSE, Naoki WADA, Jiro KATTO, Heming SUN

♦ Computer Science and Technology
A Complex Number-Based Node Ranking Calculation .. 190

 Keita Sugihara
Developing an Acceptance Model for Use with Online Video-Sharing Platforms ... 194

 Ittipat Chinangkulpiwat, Singha Chaveesuk, Wornchanok Chaiyasoonthorn
Simulation of Tele-Force-Position Sharing System with 1000 Clients Considering MMOG 199

 Takanori Miyoshi, Ho Duc Tho
Preliminary Results of a Motion-Based Interactive Game for Supporting Stroke Survivor Telerehabilitation .. 205

 Atiqul Islam, Mark Tee Kit Tsun, Lau Bee Theng
Redunacny Features Detection and Removal for Simplification of Convolutional Neural Networks 210

 Shih-Chang Hsia, Yu-Kuan Yang
The Use of Communication Technology in Establishing Community Relationships Applied by School Administration Staff, in Relation to Their Education Level and Age .. 214

 Bambang Budi Wiyono, Henny Indreswari, Arif Prastiawan
CodeHelper: A Web-Based Lightweight IDE for E-Mentoring in Online Programming Courses 220

 Xiao Liu, Gyun Woo
Towards Mass Individualized Production: RAMI 4.0 Asset Data Channelling for Manufacturing Value Chain Connectivity ... 225

 Jen Hin Hang, Wah Pheng Lee, Yee Mei Lim
How Successful in Individual Prosumer Performance in Thailand ... 232

 Arissa Sa-ardnak, Wornchanok Chaiyasoonthorn, Singha Chaveesuk

Author Index
Preface

After the success of past two ICCCI Conferences, I am pleased to welcome you all to the additional success, the third IEEE International Conference on Computer Communication and the Internet (ICCCI 2021) held from 25th June to 27th June 2021, as a virtual conference. ICCCI 2021 is technically sponsored by IEEE, IEEE Japan Council, IEEE Nagoya Section, ITE and Nagoya Institute of Technology, Japan.

Interests arising from computer communications have been dramatically increasing and becoming more and more important in this modern networking technological era. The world is asking for smarter and more efficient networking solutions for scientist, academics, researchers and engineers.

The objective of ICCCI 2021 is to bring together researchers and practitioners from academia and industry to exchange their challenges and discuss their latest progress and development in this field.

We feel deeply grateful to all that have contributed to make this event possible: authors who contributed papers, the conference committee, the keynote & invited speakers and the diligent reviewers. Through this great event, we trust that you will be able to share the state-of-the-art developments and the cutting-edge technologies in the broad areas of computer communication and the Internet.

The organizing committee including myself truly believes that active participants will find erudite and informative discussions, and will enjoy the opportunity for sharing research results. I hope this success can be evolved into persistent success annually in the future; in this year, there are presenters from all corners of the globe and all major countries.

On behalf of the conference organizing committee, we sincerely hope you will enjoy ICCCI 2021 that will offer you a chance to network with academics and researchers in the field of in computer communication and the Internet.

Have good time during ICCCI 2021.

Best Regards,

Conference Chair- ICCCI 2021
Prof. Yutaka Ishibashi,
Nagoya Institute of Technology, Japan
Conference Committee

Conference Chair
Yutaka Ishibashi, Nagoya Institute of Technology, Japan

TPC Co-chairs
Chih-Peng Fan, National Chung Hsing University, Taiwan
Kostas E. Psannis, University of Macedonia, Greece
Jiro Katto, Waseda University, Japan
Yuhua Liu, Central China Normal University, China

Publicity Co-chairs
Nobuo Funabiki, Okayama University, Japan
Wen-Chung Kao, National Taiwan Normal University, Taiwan
Takanori Miyoshi, Nagaoka University of Technology, Japan
Aye Thida, University of Computer Studies, Mandalay, Myanmar

Local Co-chairs
Yuichiro Tateiwa, Nagoya Institute of Technology, Japan
Pingguo Huang, Gifu Shotoku Gakuen University, Japan

Technical Program Committee
Masaki Aida, Tokyo Metropolitan University, Japan
Mohammad Ahmed Alomari, Universiti Sultan Zainal Abidin (UniSZA), Malaysia
Dimitris E. Anagnostou, Heriot-Watt University, UK
Jordi Mongay Batalla, National Institute of Telecommunications, Poland
Tian-Sheuan Chang, National Chiao Tung University, Taiwan
Alexander Chatzigeorgiou, University of Macedonia, Greece
Dimitris Chatzopoulos, The Hong Kong University of Science and Technology, Hong Kong
Kuan-Hung Chen, Feng Chia University, Taiwan
Georgios C. Christoforidis, University of Western Macedonia, Greece
Ming-Chin Chuang, China University of Technology, Taiwan
Mark Claypool, Worcester Polytechnic Institute, USA
Yu-Cheng Fan, National Taipei University of Technology, Taiwan
Manuel Fuentes, Universitat Politecnica de Valencia, Spain
Akihiro Fujihara, Chiba Institute of Technology, Japan
Yuichi Fujino, Future University Hakodate, Japan
Norihiro Fukumoto, KDDI Research, Japan
Yasushi Fuwa, Shinshu University, Japan
José Gago-Silva, University of Lisbon, Portugal
Sotirios Goudos, Aristotle University of Thessaloniki, Greece
Naohira Hayashibara, Kyoto Sangyo University, Japan
Dimitrios Hristu-Varsakelis, University of Macedonia, Greece
Yin-Tsung Hwang, National Chung Hsing University, Taiwan
Takeshi Ikenaga, Kyushu Institute of Technology, Japan
Nobuhiro Inuzuka, Nagoya Institute of Technology, Japan
Xue-Qin Jiang, Donghua University, China
Wout Joseph, Ghent University, Belgium
Shinsuke Kajioka, Nagoya Institute of Technology, Japan
Masaru Kamada, Ibaraki University, Japan
Nikolaos V. Kantartzis, University of Thessaloniki, Greece
George K. Karagiannidis, Aristotle University of Thessaloniki, Greece
Theodore H. Kaskalis, University of Macedonia, Greece
Yasunori Kawai, National Institute of Technology, Japan
Haruki Kawanaka, Aichi Prefectural University, Japan
Yoshihiro Kawano, Tokyo University of Information Sciences, Japan
Hiroyuki Kimmayama, Daido University, Japan
Kazuyuki Kojima, Shonan Institute of Technology, Japan
George Kokkonis, University of Western Macedonia, Greece
Shiann-Rong Kuang, National Sun Yat-sen University, Taiwan
Yeong-Kang Lai, National Chung Hsing University, Taiwan
Mitsuru Maruyama, Kanagawa Institute of Technology, Japan
Constandinos Mavromoustakis, University of Nicosia, Cyprus
Aung Htein Maw, University of Information Technology, Myanmar
Hiroyoshi Miwa, Kwansei Gakuin University, Japan
Khin Than Mya, University of Computer Studies, Yangon, Myanmar
Petros Nicopolitidis, Aristotle University of Thessaloniki, Greece
Hitoshi Ohnishi, The Open University of Japan, Japan
Chikara Ohta, Kobe University, Japan
Jun Okamoto, NTT Network Technology Laboratories, Japan
Shusuke Okamoto, Seikei University, Japan
Takanobu Otsuka, Nagoya Institute of Technology, Japan
Win Pa Pa, University of Computer Studies, Yangon
Georgios Papadimitriou, Aristotle University, Greece
Foteini-Niovi Pavlidou, Aristotle University of Thessaloniki, Greece
Androniki Sapountzi, Vrije Universiteit, Netherlands
Hideyuki Shimonishi, NEC, Japan
Shigeki Shiokawa, Kanagawa Institute of Technology, Japan
Shinji Sugawara, Chiba Institute of Technology, Japan
Hiroshi Sunaga, Osaka Institute of Technology, Japan
Chisa Takano, Hiroshima City University, Japan
Efthimios Tambouris, University of Macedonia, Greece
Kazuya Tsukamoto, Kyushu Institute of Technology, Japan
Masato Tsuru, Kyushu Institute of Technology, Japan
Takahiro Uchiya, Nagoya Institute of Technology, Japan
Kiyoshi Ueda, Nihon University, Japan
Hitoshi Watanabe, Tokyo University of Science, Japan
Chih-Yu Wen, National Chung Hsing University, Taiwan
Miki Yamamoto, Kansai University, Japan
Hiroaki Yamanaka, NICT, Japan
Katsunori Yamaoka, Tokyo Institute of Technology, Japan
Keiichi Yasumoto, Nara Institute of Science and Technology, Japan
Traianos V. Yioultsis, Aristotle University of Thessaloniki, Greece
Tokumi Yokohira, Okayama University, Japan
Shingchern You, National Taipei University of Technology, Taiwan
How Successful in Individual Prosumer Performance in Thailand

Arissa Sa-ardnak
KMITL Business School
King Mongkut’s Institute of Technology
Ladkrabang
Bangkok, Thailand
Faculty of Management Science, Silpakorn University, Petchaburi IT Campus
Petchaburi, Thailand
arissa@ms.su.ac.th

Wornchanok Chaiyasootthorn*
KMITL Business School
King Mongkut’s Institute of Technology
Ladkrabang
Bangkok, Thailand
Wornchanok.ch@kmit.ac.th

Singha Chaveesuk
KMITL Business School
King Mongkut’s Institute of Technology
Ladkrabang
Bangkok, Thailand
Singha@it.kmit.ac.th

Abstract—The evolution of technology has affected consumer behavior around the world, including through faster, more frequent data consumption, data comparison, and more self-specific needs. This makes consumers more keenly focused on self-production. The prosumer society is plentiful and focuses on effectiveness. This results in greater quality control problems. The usage of those who do not yet value it are less clear. Workers are not paid for their work, unlike other economies. The prosumer shares their knowledge in a way which is fulfilling. A professional prosumer shares their knowledge with society that makes them proud. The technology usage will help improve individual prosumers’ key to success. This study offers a conceptual framework of factors that affect individual prosumer performance. This article synthesizes Technology Cultural Theory (TCT) based on TAM2, Information System Success Model (ISS) based on the IS success model, Prosumer Theory (PT) based on consumer behavior, and Individual Prosumer Performance (IPP) based on individual performance.

Keywords—prosumer, technology, creativity, self-efficacy, individual performance

I. INTRODUCTION

New technologies and discoveries are rapidly developing on a daily basis [48]. The third wave of the internet has a role in all aspects of life [7]. People can communicate via technology wherever they are and at any time, allowing businesses to more easily gain consumer opportunities. Latest digital technologies mainly focus on the use of smartphone technology to improve business performance [18], resulting in the disruption of old consumer habits. Searching for products and ordering them online has a significant impact on the way we purchase goods and services. Consumers are learning new consumption habits and are required to adopt new technologies and various applications [32]. Social transformation has revolutionized consumers into prosumers who can do their own thing [25]. The prosumer was mentioned in the 1980s by Toffler as a combination of ‘producer’ and ‘consumer’ [7, 13,19, 24, 34, 39]. Prosumer behavior is associated with both consumption and production, which is not specifically focused. These innovations can facilitate manual operations [25] and have the opportunity to drive a learning revolution, which has discussed for decades yet has barely been achieved as of yet [43]. Could prosumer’s individual performance drive the learning revolution?

Between 2020-2040, Thailand’s population is expected to age with a declining working population from 43.26 million (65 percent) in 2020 to 36.5 million (56 percent) in 2040. Moreover, the proportion of working-age people in Thailand has decreased since 2015, resulting in labor shortages in various sectors. The productivity of Thai workers is relatively low due the lack of skilled labor force, delayed technology development, and a mismatch between skill development and labor market needs. In addition, demographic changes have resulted in many having to care for the elderly. These developments will ultimately affect national and economic policies [10].

Thai government policy is committed to developing Thai people into the 21st century or the digital era by focusing on the learning process and developing the potential of the Thai people at all ages. By applying the principles of human development based on knowledge, creativity, and innovation, the government seeks to instill diverse skills, digital knowledge, and learning for the populace to be self-reliant [40]. Successful individuals of the 3rd wave must be able to take advantage of technology while focusing on outstanding content. They must also recognize the importance of other elements involved and understand the community [43]. The key to successful potential is highly focused on developing individual performance [36]. Prosumer empowerment has a strong correlation between the prosumer and the adoption of the technology [9]. Factors for individual performance also depend on usage and user satisfaction in the theory of information systems success [14]. It directly depends on acceptance of technology and information system success.

This article provides a conceptual framework for the TAM2, IS success models, and consumer behavior regarding which factors influence the performance of individual prosumers. By synthesizing theories based on different categories and independent concepts, each with different meanings and concepts related to individual prosumer

*corresponding author
performance, the literature of TCT, ISS, PT, and IPP is reviewed.

II. LITERATURE REVIEWS

A. Technology Cultural Theory (TCT)

The dynamics of prosumer behavior are evolving as technology continues to expand [33]. Digital technology has greatly changed human lives and added a new dimension to prosumer behavior. Responses to constant change of social and cultural dynamics defines digital consumer culture theory which explains what is conducive to digital. Technology can facilitate joint creation by empowering prosumers. Moreover, technology allows connections to increase, enables access to information, and makes it possible to quickly disseminate information [52]. Technology culture involves technical expertise of digital technology and showcasing cultural differences [1]. The concept of mutual exchange, repetition, and dynamic relationships between digital consumer and digital adoption [9]. Several theories explore new technology acceptance and consumer intentions. The Technology Acceptance Model (TAM) is one such theory which has simulated user technology adoption [20, 38, 41, 56]. TAM was developed by Davis and Venkatesh (1996), with two main factors being defined: Perceived usefulness (PU); and perceived ease of use (PEOU). Both of these factors were found to directly influence the behavioral intentions of adopting new technologies [14, 21, 41, 49].

![TAM2 model adapted from Davis and Venkatesh (2000).](image)

The TAM2 model was developed and tested on the basis of TAM by Davis and Venkatesh (2000), which “explains the PU and usage intentions in terms of social influence and cognitive instrumental processes” as shown in Fig 1. The TAM2 model is a more powerful simulation that affects individual performance and is commonly adopted in a culture of community and leadership focused management [14, 23, 49].

Increased prosumption is due to individual performance, in which individuals enjoy their activities. It can be seen that many people genuinely enjoy online shopping, using airport self-service kiosks, shopping on e-Commerce websites, and searching and ordering books on Amazon.com. Certain prosumers may be recognized as photographers or bloggers on professional software applications and have a following which can pay for their success and make profit online [24]. These examples show how cultural technology influences prosumer performance.

B. Information System Success Model (ISS)

The performance of successful social behavior depends on the level of individual control that a person has on internal and external factors that could interfere with their intended action [28]. The most commonly accepted Information System Success model is the DeLone & McLean model, a theory that influences individual cultures as shown in Fig 2. System quality (SyQ), information quality (IQ), and service quality (SQ) directly influence user satisfaction (US) and individual performance (IP). Moreover, usage (Ug) directly influences user satisfaction (US), individual performance (IP) [5, 15, 54], Information quality (IQ), and service quality (SQ) which directly influence perceived usefulness (PU) [54]. Individual performance has been considered from a variety of perspectives including individual level factors such as SyQ, IQ, SQ, Ug, US, PU, and IP.

![Adapted from the DeLone & McLean model (1992).](image)

C. Prosumer Theory (PT)

The prosumer concept has developed on the basis of consumer theory. The prosumer is proud of having created their own works and shared their knowledge with the online society [13, 24, 46]. For example, on Facebook a prosumer can decide how to represent themselves and are able to adjust their presentation as required. In addition, many people find Facebook to be a powerful social tool to build relationships and use it to communicate with others [24]. The potential of AI will be recognized by a prosumer culture that values DIY sharing. The response to different AI potential depends on which culture the prosumer adopts [46]. For prosumer technological creativity, the prosumer’s creativity and analytical capacity have a significant positive influence on prosumer performance. In simple terms, improving the prosumer’s self-efficacy and creativity serve to improve their technological proficiency level, thereby enhancing the prosumer’s performance [16].
Some factors are an important relations between creativity, analytical abilities, self-efficacy, and prosumer performance.

D. Individual Prosumer Performance (IPP)

The key to successful performance is a strong focus on developing individual competencies [36]. The potential is the quality and quantity of task performed by the individual’s performance [22]. Most individual prosumer performance involves individuals with the necessary knowledge to communicate and do business with one another. The ability to read and write multimedia content on a network can aid the individual’s continuous development of specialized knowledge [47]. As individuals are able to produce increased amounts for themselves, the prosumer potential of human self-expression is developed accordingly [46]. The development performance of individual prosumers is the key to long-term success.

The development of the digital prosumer is a new model of capitalism, in which those who work are not paid via income, but are rather rewarded by fame. Furthermore, they are proud of their creations and there is a switch from scarcity to abundance. This focus on effectiveness is greater than efficiency in professional capitalism. For instance on Facebook, a little gain and empowerment can allow people to benefit greatly from being a professional [24]. Prosumers who understand technology, participate in high level product categories and who are thought leaders, active learners, or creators are typically involved in creating value together [52]. Participants can create new opportunities in the social space and are able to overcome geographical constraints through the use of social media [35]. The use of AI gives enables the prosumer to attain a higher level of productivity and capability for AI applications. The level of prosumer self-expression can be empowered with AI applications [46]. Individual prosumer performance has the potential to improve sustain prosumer society.

III. CONCEPTUAL FRAMEWORK

To study the factors that affect individual prosumer’s ability to connect, share, and create, this study begins to integrate TAM2. IS success model, prosumer theory and assesses how they affect individual performance. Additionally, the study extends the results by including creativity, analytical capacity, and self-efficacy as mediator variables which directly and indirectly correlate to individual performance, as presented in Fig. 3.

Subjective norms (SN) are those in which the individual perceives community attitudes immediately to influence certain behaviors or can call “view of society” [42]. SN are an assessment of social pressures on individuals regarding whether to practice or follow a particular behavior [29, 37]. SN factors define the most appropriate predictive concepts in two separate elements of the injunctive and descriptive norm components [45]. SNs are determined by normative beliefs and motivation to comply with perceived norms [17]. SN directly influence the use of a system and corresponds to the role of the user. It is possible that some will affect the purpose and use of the other role [5]. Through behavioral investigation or use of intelligent technology, analytical results show that SN positively affects the implementation of smart technology [12].

When consumers become aware of the subject norms held by those who are important to them, those norms come to influence their decision making [53].

H1: Subjective norms (SN) positively affect usage (Ug).

Systems quality (SyQ) is a desirable trait which includes ease of use and reliability of the user’s system [5]. Information quality (IQ) is the nature of information (system output) that the users expect, i.e., validity and relevance [50]. Service quality (SQ) is the service (organization) characteristic that users expect from what it provides to the user [55]. SQ measures technical success, including usability, availability, reliability, adaptability, and response time (for instance download time) which is a quality issue that system users value. IQ measures the content problems or meaningful success and should be personal, complete, relevant, easy to understand, and secure. SyQ, which is the collective support provided by the service provider, whether support delivered by an IS department, a new organizational unit, or outsourced by a third-party provider. The importance is often greater since users are now our consumers, while poor user support can lead to a reduced consumer base and loss of sales. User satisfaction (US) is an important way to measure customer feedback about a business system and should cover the entire consumer experience lifecycle, from data extraction through purchases, payments, receipts, and services. US and individual performance (IP) impacts measure effectiveness success [8, 15, 55].

The perspective of technology quality includes system quality, information quality, and service quality. It is a factor that influences user satisfaction of information systems and government procurement plans [5]. The factors that affect the performance of individuals when using mobile banking are service quality, information quality, and system quality which affect user satisfaction. The results of one study point to the significant factor of user usage and satisfaction that influences individual technology performance [15]. Analyzing the factors.
which affect individual potential suggests that the quality of the system is also a factor that affects individual performance. Determining the cost of improving the level of items in system quality increases the value of performance [8].

H2: Service quality (SQ) positively affects user satisfaction (US).

H3: Information quality (IQ) positively affects user satisfaction (US).

H4: System quality (SyQ) positively affects user satisfaction (US).

H5: System quality (SyQ) positively affects individual performance (IP).

Creativity (Cr) is the capacity for creation [4]. Cr includes exploitation, uniqueness, and outcome [44]. Creativity in technology is a complementary success of creative technology. Technological creativity and integration of different knowledge domains with the creative formation process and the results of model thinking and creativity [27]. Analytical capacity (AC) is the use of information, statistical and quantitative analysis, explanatory and forecast models, and fact-based management to drive decisions and actions [51]. AC is necessary for assessment in IT modernization [30] and is a measure of knowledge absorption to assess the effectiveness of IT implementation [26]. An individual’s performance (IP) is the level of success for personal purpose or purpose of the group in which they are located [22]. Creativity positively influences individual performance [6]. The influence of creativity and analytical capacity on individual performance. Creativity and analytical capacity can improve individual performance. Therefore, positive creativity greatly affects individual performance. This is an important factor for improving an individual’s work [16].

H6: Creativity (Cr) positively affects individual performance (IP).

H7: Analytical capacity (AC) positively affects individual performance (IP).

Self-efficacy (SE) refers to an individual’s degree of self-confidence and is the ability to accomplish specific tasks independently [2]. An individual’s faith in their performance influences their choices, ambitions, dedication to specific tasks, and the length of time they take to achieve specific goals when faced with adversity and setbacks [3].

The role of self-efficacy is as a mediator. Self-efficacy mediates a person’s creativity, analytical capacity, and task performance. Therefore, improving creativity and analytical capacity directly affects individual performance. More simply, enhancing self-efficacy increases creativity, analytical capacity, and individual performance. There is a significant relationship between personal creativity, self-efficacy, and individual performance. When a person has experience in the field, they become familiar with things that enhance their skills, knowledge, ideas, confidence, and enhance individual performance [16].

H8: Creativity (Cr) positively affects self-efficacy (SE).

H9: Analytical capacity (AC) positively affects self-efficacy (SE).

Usage (Ug) satisfies all user needs [15], which a voluntary use of the system by the user. This is clearly an important factor to understand IS success. Factors are measured by use of the system, ease of use, frequency of use, time of use, number of times that it is accessed, usage patterns, and dependencies [55]. Usage (Ug) measures everything from system visits, to navigation within it, information retrieval, and execution of a transaction. User satisfaction (US) mediates the quality of the overall system and the continued use of the service [15].

A user’s usage affects the impact of information systems on user satisfaction, in which good usage is required to increase user satisfaction [5]. The use of business intelligence positively correlates with end-user computing satisfaction. The research results provide clear empirical evidence that a higher degree of computing end-user satisfaction also results in enhanced system usage [11]. System usage and user satisfaction have a significantly positive relationship with each other. Therefore, the higher the rate of system usage, the higher the user satisfaction as well [55]. Regarding the impact of technology usage on higher individual performance [5], those with a higher system usage level have a greater level of individual performance. The usage of intelligent systems can help individuals to work more effectively and improve productivity and decision-making quality [11].

User satisfaction affects how information systems impact individual performance [5]. User satisfaction factors are variables that clearly affect an individual’s performance [31]. Higher levels of computer user satisfaction can affect individual performance to a higher degree. The results indicate that if an end user as a high degree of computing satisfaction, their individual performance will improve [11].

H10: Usage (Ug) positively affects user satisfaction (US).

H11: Usage (Ug) positively affects individual performance (IP).

H12: User satisfaction (US) positively affects individual performance (IP).

A person with a higher self-esteem has greater confidence to accept challenges. In contrast, individuals with lower self-efficacy often present that they find it difficult to face different challenges. Self-efficacy enhances creativity, analytical capacity, and individual performance. In particular, by mediating the effects of self-efficacy, creativity, and analytical capacity, it improves individual performance. Regarding the relationship between Cr, SE, and IP, when a person experiences situation in which they are familiar, it will significantly improve their skills, knowledge, ideas, and confidence, meaning that it also increases individual performance [16].

For instance, to use the example a high-end shoe manufacturer, the business receives design ideas from design experts and selects the best designs for manufacture. Those who create winning designs are not entitled to royalty, but their name is displayed on the shoe according to the design. [24]. The participation of those who understand the cultural context...
and share creativity with each other are indicators of success within a prosumer culture. Cultural mechanisms are considered and share creativity with each other are indicators of success. Being part of the practice community allows participants to connect with others, create creative organizations, and learn or enhance their skills when they engage together using social media [35].

H13: Self-efficacy (SE) positively affects individual performance (IP).

IV. CONCLUSION

This study offers a conceptual framework based on TAM2, IS success model, PT, and IPP, which factors affect individual prosumer performance, and also provides other factors including creativity and analytical capacity. Self-efficacy is a prediction between creativity and analytical capacity that affects individual prosumer performance. Individual prosumer performance depends upon SN, SQ, IQ, SyQ, Ug, US, Se, Cr, and AC. When prosumers produce in accordance with their own interests, they will express their produce ability. Talented individuals will accept the use of technology to increase productivity. Such potential is influenced by a prosumer's belief that new technology is useful and easy to use. Moreover, prosumers who believe that they can create high-value outcomes have personal norms that recognize that an important reference person believes they should be, as well as the perceived particular behavior control. This will result in them being able to use it more conveniently. AI-prosumers can help expand the scope of their expression. When sharing their values, a sense of self-esteem is created among a broad popular community. Production efficiency depends on creativity and analytical capacity. Prosumers constantly develop specialized knowledge to allow them to share creative value. A future study will implement data collection from prosumers using questionnaires and data analysis conducted using a structural equation model created with AMOS.

REFERENCES

Author Index

Abdul Hanief Amarullah 78 Junjun Guo 157
Adrian Chan 123 Kazumasa Takahashi 130
Aizat Kydyrbekova 163 Kazushi Hamazaki 136
Akbayan Bekarystankzy 163 Kazuyuki Kojima 136
Arif Prastiawan 214 Keita Sugihara 190
Ariissa Sa-ardnak 232 Kh Arif Shahriar 123
Arthus Josias Simon Runturambi 78 Khin Than Mya 27
Atiqul Islam 205 Kobkiat Saraubon 84
Audrey Asante 89 Kohei Okazaki 109
Ayes Chinmay 141 Kozyrev Yury 73
Bambang Budi Wiyono 214 Lau Bee Theng 205
Bikash Chandra Sahana 117 Lawrence R. Chen 123
Bondan Widiawan 78 Lijia Tao 32, 52
Chanate Ratanaubol 19 Lin Wang 171
Cheng-Shun Hsiao 1 Lu CHEN 58
Chenlei Zhang 157 Mallikarjun Kokatanur 23
Chih-Peng Fan 1 Mark Tee Kit Tsun 205
Chunhe Xia 102 Masaki Hongo 15
Chun-Jung Liao 6 May Zin Oo 27
David V. Plant 123 Mesmin J. MBYAMM KIKI 146
Dina Oralbekova 163 Mingming Wang 171
FangMing Guo 69 Minoru Kuribayashi 136
Fan-Hao-Chi Fang 168 Mohammed Y. Shakor 96
Gaspard Quenard 38 Mostafa Khalil 123
Guanyu Mu 176 Nagashree N 23
Gyun Woo 220 Naoki WADA 185
Haruna YUNUSA 146 Nigar M. Shafiq Surameery 96
Hemanta Kumar Pati 141 Nobuo Aoki 109
Heming SUN 185 Nobuo Funabiki 136
Henny Indreswari 214 Orken Mamyrbayev 163
Hiroyasu Obata 109 Pan Gao 63
Hitoshi Hayashi 176 Panita Wannapiroon 19, 152
Ho Duc Tho 199 Pingguo HUANG 58, 180
Hui Wang 73 Prachayanun Nilsook 19, 84, 152
Ibrahim IDDI 146 Pradini Puspitaningayu 136
Ittipat Chinangkulpiwat 194 Prashnatita Pal 117
Jayanta Poray 117 Premjyoti Patil 23
Jen Hin Hang 225 Randy Kuang 123
Jiro KATTO 185 Ruizhen Wu 171
Junichi Funasaka 109 Ruzhou Ye 180
<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shvetakumar Patil</td>
<td>23</td>
</tr>
<tr>
<td>Sheng-Bi Wang</td>
<td>10</td>
</tr>
<tr>
<td>Shih-Chang Hsia</td>
<td>6, 210</td>
</tr>
<tr>
<td>Shingchern D. You</td>
<td>168</td>
</tr>
<tr>
<td>Shinji Sugawara</td>
<td>130</td>
</tr>
<tr>
<td>Shota HIROSE</td>
<td>185</td>
</tr>
<tr>
<td>Singha Chaveesuk</td>
<td>194, 232</td>
</tr>
<tr>
<td>Sukosol Wanotayapitak</td>
<td>84</td>
</tr>
<tr>
<td>Surachet Sangkhapan</td>
<td>152</td>
</tr>
<tr>
<td>Takanori Miyoshi</td>
<td>199</td>
</tr>
<tr>
<td>Tao Huang</td>
<td>69</td>
</tr>
<tr>
<td>Tianbo Wang</td>
<td>102</td>
</tr>
<tr>
<td>Tolganay Turdalykyzy</td>
<td>163</td>
</tr>
<tr>
<td>Tomio Goto</td>
<td>15</td>
</tr>
<tr>
<td>Wah Pheng Lee</td>
<td>225</td>
</tr>
<tr>
<td>Wenbin Li</td>
<td>38</td>
</tr>
<tr>
<td>Wenhui He</td>
<td>102</td>
</tr>
<tr>
<td>Wornchanok Chaiyasoonthorn</td>
<td>194, 232</td>
</tr>
<tr>
<td>Xiao Liu</td>
<td>220</td>
</tr>
<tr>
<td>Xiaochen Liu</td>
<td>102</td>
</tr>
<tr>
<td>Xiaohua Feng</td>
<td>89</td>
</tr>
<tr>
<td>Xinya Xu</td>
<td>32, 52</td>
</tr>
<tr>
<td>Yan Wu</td>
<td>171</td>
</tr>
<tr>
<td>Yee Mei Lim</td>
<td>225</td>
</tr>
<tr>
<td>Yisheng Zhao</td>
<td>32, 52</td>
</tr>
<tr>
<td>Yonghuai Wang</td>
<td>47</td>
</tr>
<tr>
<td>Yuanzhi Huo</td>
<td>136</td>
</tr>
<tr>
<td>Yuchen Shan</td>
<td>73</td>
</tr>
<tr>
<td>Yu-Cheng Fan</td>
<td>10</td>
</tr>
<tr>
<td>Yuichiro Tateiwa</td>
<td>58, 180</td>
</tr>
<tr>
<td>Yu-Kuan Yang</td>
<td>210</td>
</tr>
<tr>
<td>Yuqi Li</td>
<td>63</td>
</tr>
<tr>
<td>Yutaka Ishibashi</td>
<td>27, 58, 180</td>
</tr>
<tr>
<td>Zhijun Wu</td>
<td>63</td>
</tr>
<tr>
<td>Zhirong Xu</td>
<td>32, 52</td>
</tr>
<tr>
<td>Zhong Li</td>
<td>102</td>
</tr>
<tr>
<td>Zihao Cao</td>
<td>73</td>
</tr>
</tbody>
</table>