
1 author results

Show exact matches only								
Refine results						Sort or	: Document count	(high-low)
Limit to Exclude			 Show documents 	View citation overvi	iew Request	to merge authors S	ave to author list	
Affiliation	^		Author	Documents	<i>h</i> −index ()	Affiliation	City	Country/Territory
Silpakorn University	(1) >	1	Kanjanamaneesathian, D.	1	0	Silpakorn University	Nakhon Pathom	Thailand
City	^		View last title \checkmark					
Nakhon Pathom	(1) >	◀ Display:	20 × results p	er page		1		∧ Top of page
Country/territory	^							
Thailand	(1) >							
Limit to Exclude								

→] Export refine

1 of 1

🛃 Download 🖶 Print 🖾 E-mail 😨 Save to PDF 🕁 Save to list More... 🔊

Acta Horticulturae • Volume 1339, Pages 483 - 489 • April 2022

Document type Article

Source type Book Series

ISSN 05677572

DOI 10.17660/ActaHortic.2022.1339.62

View more 🗸

Management based on POLC framework to promote the adoption and use of beneficial bacterium Bacillus megaterium for growers in Thailand

Kanjanamaneesathian D. a 🖂 ; Kanjanamaneesathian M. b

🖪 Save all to author list

^a Faculty of Management Science, Silpakorn University, Phetchaburi IT campus, Cha-Am, Phetchaburi, 76120, Thailand

^b Faculty of Animal Science and Agricultural Technology, Silpakorn University, Phetchaburi IT campus, Cha-Am, Phetchaburi, 76120, Thailand

Full text options 🗸 🛛 🔂 Export

Abstract

Author keywords

SciVal Topics

Funding details

Abstract

Empowering the groups of people and organizations involves 1) planning, 2) organizing, 3) leading, and 4) controlling. This four-step process is called POLC framework which will be applied to manage the group of growers in Thailand. There are four main stakeholders, such as target growers, local agricultural staffs, sub-district headmen, and researchers. In this study, there are nine target growers, three local agricultural staffs, two sub-district headmen, and four researchers who have participated in the project to promote the adoption and use of beneficial bacterium Bacillus megaterium in horticultural crops, such as vegetables and fruits, based on POLC management framework in two provinces, Uttaradit and Phetchaburi. A purposive sampling technique was used to select these nine growers. The interview was conducted using in-depth interview and focus group from January to December 2019. The data from the in-depth interview and the focus group were used to score the

Cited by 0 documents

Inform me when this docum is cited in Scopus:

Set citation alert >

Related documents

Bacillus megaterium promot both growth of seedlings in t laboratory and nodulation of yardlong bean (Vigna unguic subsp. sesquipedalis) in the p under outdoor condition

Meetum, P., Win, K.S., Kanjanamaneesathian, M. *(2022) Acta Horticulturae*

Paper-based inoculum of Bac megaterium and its practical application for simple culture preparation

Kanjanamaneesathian, M. , Nimanong, W. *(2019) New Zealand Plant Protection*

Comparison of aqueous seasoning cube solution and nutrient broth as culture men for production of the biocont agent Bacillus megaterium in laboratory, and for suppression rice grain discolouration in the field

Kanjanamaneesathian, M. , Meetum, P. *(2019) New Zealand Plant Protection*

View all related documents b on references

Find more related document Scopus based on:

Authors > Keywords >

relative role of each stakeholder in the project and describe the key activities in which each stakeholder must carry out under POLC framework accordingly. Based on the score of relative role of each stakeholder, the target growers played the most active leading role. The score also corresponded with the number of the key activities. The local agricultural officers are the "change agent", while the researchers are the catalyst assisting the "change agent". The sub-district headmen are the facilitator of the project. For a project to succeed, there must be a common understanding of the plan, stakeholder roles, and approach to management of the process. © 2022 International Society for Horticultural Science. All rights reserved.

Author keywords

Bacillus megaterium; fungal diseases in vegetable crops; management; POLC framework

SciVal Topics 🕕		\checkmark
Funding details		~
	References (9)	View in search results format >
	□ All Export 🕞 Print 🖾 E-mail 🖱 Sav	e to PDF Create bibliography
	I Boettiger, S., Denis, N., Sanghvi, S. (2017) Successful agricultural transfor and delivery. Cited 3 times. (accessed April 2, 2020) <u>https://www.mckinsey.com/industries/ agriculturaltransformations-six-core-ed</u>	
	 Carpenter, M., Bauer, T., Erdogan, B. (2012) Management Principles v.1.0. C (accessed April 2, 2020) <u>http://www.lardbucket.org</u> 	Cited 11 times.
	3 (2010) Good Agricultural Practices (GA extension staff in Tanzania. Cited 9 tin http://www.fao.org/docrep/013/i1645e	nes.
	 4 Kanjanamaneesathian, M., Meetum, F Efficacy of a simple liquid cultu suppressing grain discoloratio (Open Access) (2017) New Zealand Plant Protection, https://journal.nzpps.org/index.php/nz doi: 10.30843/nzpp.2017.70.49 View at Publisher 	ure of Bacillus megaterium in n disease of rice (Oryza sativa) 70, pp. 196-202. Cited 7 times.

5 Kanjanamaneesathian, M., Meetum, P.

Comparison of aqueous seasoning cube solution and nutrient broth as culture media for production of the biocontrol agent Bacillus megaterium in the laboratory, and for suppression of rice grain discolouration in the field (Open Access)

(2019) New Zealand Plant Protection, 72, pp. 205-212. Cited 3 times. https://journal.nzpps.org/index.php/nzpp/article/view/249/11554 doi: 10.30843/nzpp.2019.72.249

View at Publisher

🔲 6 Kanjanamaneesathian, M., Nimanong, W.

Paper-based inoculum of Bacillus megaterium and its practical application for simple culture preparation (Open Access)

(2019) *New Zealand Plant Protection*, 72, pp. 195-204. Cited 3 times. <u>https://journal.nzpps.org/index.php/nzpp/article/view/248/11553</u> doi: 10.30843/nzpp.2019.72.248

View at Publisher

7 Maketon, M., Apisitsantikul, J., Siriraweekul, C.

Greenhouse evaluation of Bacillus subtilis AP-01 and Trichoderma harzianum AP-001 in controlling tobacco diseases (Open Access)

(2008) *Brazilian Journal of Microbiology*, 39 (2), pp. 296-300. Cited 34 times. <u>http://www.scielo.br/pdf/bjm/v39n2/a18.pdf</u> doi: 10.1590/S1517-83822008000200018

View at Publisher

8 (2019)

(accessed April 2, 2020) http://impexp.oae.go.th/service

 9 Warburton, H., Ketunuti, U., Grzywacz, D.
 (2002) A survey of the supply, production and use of microbial pesticides in Thailand, NRI Report 2723, p. 100. Cited 4 times.
 (Chatham: Natural Resources Institute, University of Greenwich)

 A Kanjanamaneesathian, D.; Faculty of Management Science, Silpakorn University, Phetchaburi IT campus, Cha-Am, Phetchaburi, Thailand; email:kanjanamanee_d@su.ac.th
 Copyright 2022 Elsevier B.V., All rights reserved.

Source details

Acta Horticulturae		
Scopus coverage years: 1976, 1988, from 1996 to Present		
Publisher: International Society for Horticultural Science		
ISSN: 0567-7572		
Subject area: (Agricultural and Biological Sciences: Horticulture)		
Source type: Book Series		
View all documents > Set document alert Save to source list Source Homepage	SNIP 2021 0.226	

CiteScore CiteScore rank & trend Scopus content coverage

i Improved CiteScore methodology

CiteScore 2021 counts the citations received in 2018-2021 to articles, reviews, conference papers, book chapters and data papers published in 2018-2021, and divides this by the number of publications published in 2018-2021. Learn more >

CiteScor	e ₂₀₂₁ ~				
ΛΕ	3,582 Citations 2018 - 2021				
0.5 =	7,089 Documents 2018 - 2021				
Calculated on 05 May, 2022					
CiteScore	rank 2021 ①				
Category	Rank Percentile				

Agricultural and Biological Sciences

- Horticulture

CiteScoreTracker 2022 ①

0.4 = 2,059 Citations to date 5,414 Documents to date

Last updated on 06 June, 2022 • Updated monthly

View CiteScore methodology > CiteScore FAQ > Add CiteScore to your site ${\mathscr S}$

15th

#80/94

Acta Horticulturae Number 1339

Proceedings of the IX International Scientific and Practical Conference on Biotechnology as an Instrument for Plant Biodiversity Conservation (physiological, biochemical, embryological, genetic and legal aspects)

Editors K. Thammasiri, P. Kongsawadworakul and H.W. Pritchard

Acta Horticulturae 1339 April 2022

PROCEEDINGS OF THE

IX International Scientific and Practical Conference on Biotechnology as an Instrument for Plant Biodiversity Conservation (physiological, biochemical, embryological, genetic and legal aspects)

Bangkok, Thailand

July 12-13, 2021

Convener

K. Thammasiri

ISHS Division Plant Genetic Resources and Biotechnology ISHS Working Group Biotechnology of Horticultural Species ISSN 0567-7572 (print) 2406-6168 (electronic) ISBN 978 94 6261 337 9, Acta Horticulturae nº. 1339 Price for non-members of ISHS: € 113,– Published by ISHS, April 2022

Executive Director of ISHS: P. Vanderborght Technical Processing: S. Franssens

ISHS Secretariat, PO Box 500, 3001 Leuven 1, Belgium - https://www.ishs.org

Printed by Drukkerij Duocore, PO Box 3099, 2220 CB Katwijk aan Zee, The Netherlands

©2022 by the International Society for Horticultural Science (ISHS). All rights reserved. No part of this book may be reproduced and/or published in any form or by any means, electronic or mechanical, including photocopying, microfilm and recording, or by any information storage and retrieval system, without written permission from the publishers.

Photograph on the front cover:

Ascocentrum miniatum (Lindl.) Schltr. is an orchid species, native to Himalayas to Thailand, Malay Peninsular and Java. The miniature plant size and the multiple upright racemes of brilliant yelloworange flowers have made it the most frequently grown and hybridized with vandaceous orchid genera to create small, bright colored plants that are easy to handle in small areas. It grows well in warm or warm-intermediate temperatures. Courtesy of Kanchit Thammasiri.

Editors

- K. Thammasiri, Mahidol University, Bangkok, Thailand
- P. Kongsawadworakul, Mahidol University, Bangkok, Thailand
- H.W. Pritchard, Kew Gardens, Wakehurst, United Kingdom

Editorial Board

- K. Thammasiri, Mahidol University, Bangkok, Thailand
- P. Kongsawadworakul, Mahidol University, Bangkok, Thailand
- H.W. Pritchard, Royal Botanic Gardens, Kew, Wakehurst Place, West Sussex, United Kingdom
- S.M. Khasim, Acharya Nagarjuna University, Andhra Pradesh, India
- T. Matsumoto, Shimane University, Shimane, Japan
- U. Meesawat, Prince of Songkla University, Songkla, Thailand
- D. Sukma, Bogor Agricultural University, Indonesia
- N. Jitsopakul, Rajamangala University of Technology Isan, Surin, Thailand
- S. Gupta, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- T. Cheung, Mahidol University, Bangkok, Thailand

IX International Scientific and Practical Conference on Biotechnology as an Instrument for Plant Biodiversity Conservation (physiological, biochemical, embryological, genetic and legal aspects)

Convener

K. Thammasiri, Mahidol University, Bangkok, Thailand

Scientific Committee

- K. Thammasiri, Chairman, Mahidol University, Bangkok, Thailand
- P. Kongsawadworakul, Vice Chairman, Mahidol University, Bangkok, Thailand
- U. Viboonjun, Secretary, Mahidol University, Bangkok, Thailand
- P. Umpunjun, Mahidol University, Bangkok, Thailand
- A. Pichakum, Mahidol University, Bangkok, Thailand
- T. Jenjittikul, Mahidol University, Bangkok, Thailand
- N. Chuenboonngarm, Mahidol University, Bangkok, Thailand
- S. Swangpol, Mahidol University, Bangkok, Thailand
- N. Panvisavas, Mahidol University, Bangkok, Thailand
- W. Songnuan, Mahidol University, Bangkok, Thailand
- P. Traiperm, Mahidol University, Bangkok, Thailand
- A. Stewart, Mahidol University, Bangkok, Thailand
- S. Ruchisansakun, Mahidol University, Bangkok, Thailand
- S. Tantiwiwat, Kasetsart University, Bangkok, Thailand
- U. Meesawat, Prince of Songkhla University, Thailand
- N. Jitsopakul, Rajamangala University of Technology Isan, Surin, Thailand

Organizing Committee

- K. Thammasiri, Chairman, Mahidol University, Bangkok, Thailand
- P. Umpunjun, Vice Chairman, Mahidol University, Bangkok, Thailand
- U. Viboonjun, Secretary, Mahidol University, Bangkok, Thailand
- P. Kongsawadworakul, Assistant Secretary, Mahidol University, Bangkok, Thailand
- C. Klaipuengsin, Assistant Secretary, Mahidol University, Bangkok, Thailand
- N. Chuenboonngarm, Mahidol University, Bangkok, Thailand
- T. Jenjittikul, Mahidol University, Bangkok, Thailand
- A. Pichakum, Mahidol University, Bangkok, Thailand
- S. Swangpol, Mahidol University, Bangkok, Thailand
- W. Songnuan, Mahidol University, Bangkok, Thailand
- P. Traiperm, Mahidol University, Bangkok, Thailand
- S. Sriwanngarm, Mahidol University, Bangkok, Thailand
- A. Muengkrut, Mahidol University, Bangkok, Thailand
- L. Wiparatanakorn, Mahidol University, Bangkok, Thailand
- N. Panvisavas, Mahidol University, Bangkok, Thailand

- A. Stewart, Mahidol University, Bangkok, Thailand
- S. Ruchisansakun, Mahidol University, Bangkok, Thailand
- D. Narkprasert, Department of Agriculture, Bangkok, Thailand
- K. Pipithsangchan, Department of Agriculture, Pathum Thani, Thailand
- R. Deewatthanawong, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
- S. Rodpradit, Queen Sirikit Botanic Garden, Chiang Mai, Thailand

International Advisory Committee

- S.J. Pei, Kunming Institute of Botany, Kunming, China
- J.M. Canhoto, University of Coimbra, Coimbra, Portugal
- H.W. Pritchard, Kew Gardens, Wakehurst, United Kingdom
- B. Panis, Bioversity International, Leuven, Belgium
- M. Lambardi, CNR, Instituto per la Valorizzazione del Legno e delle Specie Arboree, Florence, Italy
- S.M. Khasim, Acharya Nagarjuna University, Andhra Pradesh, India
- I. Mitrofanova, Nikita Botanical Gardens, Yalta, Russia
- T. Matsumoto, Shimane University, Matsue, Japan
- S. Yamamoto, National Institute of Agrobiological Sciences, Ibaraki, Japan
- Y.Y. Mendi, University of Cukurova, Adana, Turkey
- T. Amore, University of Hawaii, Hawaii, USA
- G. Volk, USDA-ARS National Laboratory for Genetic Resources Preservation, Colorado, USA
- M. Nagel, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- R. Go, Universiti Putra Malaysia, Selangor, Malaysia
- D. Sukma, Bogor Agricultural University, Indonesia

National Advisory Committee

President of Mahidol University

Director General of Department of Agriculture

Dean of Faculty of Science, Mahidol University

Head of Department of Plant Science, Faculty of Science, Mahidol University

S. Kanlayanarat, King Mongkut's University of Technology Thonburi

FOREWORD

The IX International Scientific and Practical Conference on Biotechnology as an Instrument for Plant Biodiversity Conservation (physiological, biochemical, embryological, genetic and legal aspects) (Biotech 2021) was successfully held on July 12-13, 2021 in Bangkok, Thailand. The conference was organized as a virtual conference due to COVID-19 pandemic by the Department of Plant Science, Faculty of Science, Mahidol University, under the auspices of the International Society for Horticultural Science (ISHS) and with the support of the Department of Agriculture.

The conference attracted 108 participants which included presenters, staff, researchers, and government agents from 17 countries around the world (Belgium, Brazil, China, Germany, India, Indonesia, Japan, Malaysia, Myanmar, Nepal, Portugal, Russia, Thailand, Turkey, United Kingdom and USA), who shared their knowledge and experiences on a wide range of topics in biotechnology of plant biodiversity conservation.

There were two days (July 12 and 13) of scientific program. The presentations were divided into seven sessions, namely Plant Diversity Conservation, Cryopreservation, Breeding, Micropropagation, Physiology and Production, Plant Molecular Research, and Plant Protection. All oral and poster presentations were of interest to participants, who responded and shared knowledge and experiences with questions, suggestions, and discussion online.

In recognition of the outstanding work of Ph.D. graduate students, two ISHS Young Minds Awards were presented to Mr. João Martins, Ph.D. student at the Center for Functional Ecology, University of Coimbra, Portugal, for the best student oral presentation, entitled "Chemotyping and in vitro conservation of strawberry tree *Arbutus unedo* L., *Ericaceae*" and Mr. Possathorn Nopun, Ph.D. student at the Department of Plant Science, Faculty of Science, Mahidol University, Thailand, for the best student poster presentation, entitled "Micromorphology and histochemistry on lip of *Orchidantha foetida (Lowiaceae)*".

I would like to thank the International Society for Horticultural Science for overall help, staffs and students from the Department of Plant Science and Faculty of Science, Mahidol University for all hosted events, co-organizers and committee for their support, keynote speakers and all participants for their valuable contribution, and the Editorial Board for their efforts in producing this volume of *Acta Horticulturae*.

K. Thammasiri Convener and Editor

PREFACE

The papers contained in this volume of *Acta Horticulturae* report the scientifically reviewed Proceedings of the IX International Scientific and Practical Conference on Biotechnology as an Instrument for Plant Biodiversity Conservation (physiological, biochemical, embryological, genetic and legal aspects). Keynote speakers and authors of selected contributed oral and poster presentations were given the opportunity to submit a manuscript for publication.

The manuscripts were reviewed by the Editors and members of the Editorial Board. Only those papers judged suitable for publication following the authors' consideration of reviewer suggestions appear in this volume of *Acta Horticulturae*.

The ISHS acknowledges and appreciates the contribution of all editors and reviewers. They have made a significant contribution to improving the quality of this publication.

The ISHS Board of Directors

LIST OF CONTENTS

Foreword Preface List of contents List of authors	vi vii ix xv
Research in plant diversity conservation	
Vital role for ethnobiology in new era of biodiversity conservation in China <i>P. Shengji and K. Thammasiri</i>	1
In vitro propagation of <i>Artocarpus lakoocha</i> Roxb.: effect of meta-topolin on shoot parameters <i>S. Gupta and V.K. Biraji</i>	5
Thai native waterlilies survey as an evidence to support 'Jongkolnee' waterlily (Nymphaea siamensis) in new subgenus V. Puripunyavanich, P. Chukiatman, W. La-ongsri, M. Limtiyayotin, L. Maikaeo, S. Kongsri and C. Kukusamude	13
Agro-morphological and genetic diversity of Indian large cardamom cultivars (<i>Amomum subulatum</i> Roxb.) in the sub Himalayan tropics <i>R. Ranjanan, K.M. Mathew and A.B. Remashree</i>	21
Biotechnological applications for plant germplasm conservation at ICAR-National Bureau of Plant Genetic Resources, India – recent achievements A. Agrawal, N. Sharma, S. Gupta, S. Bansal, V. Srivastava, E.V. Malhotra, S. Chander, R. Gowthami and K. Singh	29
Zygotic embryos for the efficient long-term conservation of a Georgian provenance of sweet chestnut: an overview <i>M. Gaidamashvili and C. Benelli</i>	43
Safeguarding and use of plant genetic resources in the DOA Genebank, Thailand. In case of "Aditayadhorn Agricultural Project in Contemplation of Her Royal Highness Princess Aditayadhornkitikhun at Surin has Collaborated with DOA Genebank – ex-situ Conservation of Some Field Crops and Horticultural Crops in DOA Genebank, Thailand 2019-2020" <i>K. Pipithsangchan, N. Boain, S. Dachakumpoo, S. Bubpato, J. Suksawat, A. Songserm,</i> <i>A. Wongpia, T. Luangsuphabool, C. Samphunphuang, D. Narkprasert,</i> <i>P.P. Chareonsap and K. Thammasiri</i>	51
Comparative assessments of alkaloids and phenolic compounds in a Thai medicinal plant, <i>Erycibe elliptilimba</i> , and other species in the genus <i>T. Atiratana, P. Traiperm, P. Kochaiphat, T. Pathomwichaiwat and U. Viboonjun</i>	59
Micromorphology and histochemistry of labellum of <i>Orchidantha foetida</i> Jenjitt. & K. Larsen (<i>Lowiaceae</i>) <i>P. Nopun, S.C. Swangpol, T. Jenjittikul and P. Kermanee</i>	67

The morphological characteristic of <i>Amaranthus</i> spp. for conservation in DOA genebank of Thailand <i>N. Boain, K. Pipithsangchan, P. Wongchang, C. Samphunphuang, A. Wongpia and</i> <i>K. Thammasiri</i>	73
Seed storage of Ipomoea alba L. in DOA genebank Thailand A. Kaewdoung, S. Dachakumpoo, K. Pipithsangchan, R. Thongviang and K. Thammasiri	81
Biotechnological methods of reproduction and preservation of species and cultivars of the genus <i>Syringa</i> L. <i>O.V. Koroleva, O.I. Molkanova and E.V. Mishanova</i>	87
Research in cryopreservation	
Plant cryopreservation: implementation and outreach G.M. Volk, K. Chen and R.M. Bonnart	93
Capsule harvesting times and various dehydration methods for cryopreservation of <i>Paphiopedilum bellatulum</i> (Rchb.f.) Stein seeds <i>S. Rodpradit, P. Wangpakapattanawong, P. Wongsawad and K. Thammasiri</i>	101
Cryopreservation of <i>Grammatophyllum speciosum</i> Blume seeds by D cryo-plate method <i>D. Thanasuttanithi and K. Thammasiri</i>	111
Cryopreservation of Sesame indicum L. seeds S. Dachakumpoo, S. Kowasurat, P. Rukkid, P. Piriyavinit, K. Pipithsangchan, S. Rodjanai, P. Sangkasa-ad, P. Wongchang, A. Songserm, C. Samphunphuang and K. Thammasiri	117
Research in breeding	
Genetic diversity of an endemic medicinal orchid, <i>Coelogyne nervosa</i> , from southern India using morphological and molecular markers J. Ramudu and S.M. Khasim	125
Morpho-biological features of oriental persimmon pollen V. Melnikov, E.S. Panyushkina, Y. Plugatar and S.Y. Khokhlov	133
Intergeneric hybridization of <i>Seidenfadenia mitrata</i> (Rchb.f.) Garay with <i>Ascocentrum</i> spp. <i>N. Jitsopakul, Y. Jenrob, U. Pongket and K. Thammasiri</i>	139
Apricot cultivars of Chinese breeding V. Korzin, Y. Plugatar and V.M. Gorina	147

Research in micropropagation

In vitro multiplication of some selected banana cultivars (<i>Musa</i> spp.) from India and their genetic fidelity using ISSR markers <i>S.A. Hasan, J. Ramudu and S.M. Khasim</i>	157
Shoot multiplication of three <i>Hedychium</i> species via immersion temporary bioreactor <i>S. Rodpradit, P. Klaharn and P. Pumisutapon</i>	167
Tissue necrosis prevention during shoot multiplication of coconut H. Wilms, D.D. Bièvre, E. Rosiers, R. Swennen, J. Rhee and B. Panis	173
The effect of plant growth regulators on the in vitro regeneration capacity in some horticultural crops and rare endangered plant species <i>I.V. Mitrofanova, N.P. Lesnikova-Sedoshenko, S.V. Chelombit, I.V. Zhdanova, N.N. Ivanova and O.V. Mitrofanova</i>	181
In vitro establishment and multiplication of <i>Vaccinium virgatum</i> Ait. 'Delite' <i>C. Schuchovski and L.A. Biasi</i>	191
A comparative analysis of in vitro responses of anthurium under temporary immersion (RITA®) <i>J.N. Uy and T. Amore</i>	199
Prospect and challenges in <i>Rhododendron</i> micropropagation <i>S.H. Tan and R. Go</i>	207
Effect of auxins and cytokinin on micropropagation of <i>Impatiens sirindhorniae</i> Triboun & Suksathan in vitro <i>S. Samala, K. Kongton, S. Yenchon, S. Petchsri, Y. Suwannakong, W. Rotchanajinda</i> <i>and P.P. Chareonsap</i>	217
A reliable protocol for micropropagation of an ornamental aquatic plant, Staurogyne repens S. Rittirat, S. Klaocheed and K. Thammasiri	227
Organogenesis and efficient in vitro plantlet regeneration from nodal segments of an ornamental aquatic plant, <i>Lobelia cardinalis</i> L., using BAP <i>S. Rittirat, S. Klaocheed and K. Thammasiri</i>	237
Large scale in vitro micropropagation of an ornamental plant, <i>Oxalis triangularis</i> A.stHil for commercial application <i>S. Rittirat, S. Klaocheed and K. Thammasiri</i>	245
Effect of N ⁶ -benzyladenine on in vitro shoot multiplication of <i>Iris collettii</i> Hook.f. and <i>I. domestica</i> (L.) Goldblatt & Mabb. <i>R. Chuengpanya, T. Piyasangcharoen, N. Thongteab, A. Muangkroot, T. Jenjittikul</i> <i>and N. Chuenboonngarm</i>	257

Thidiazuron induces high-frequency plant regeneration from shoot tip explants of an ornamental aquatic plant, Anubias barteri var. nana273S. Rittirat, S. Klaocheed and K. Thammasiri281Micropropagation of an endangered medicinal plant, ant-plant, Myrmecodia tuberosa Jack., for conservation in Thailand S. Rittirat, S. Klaocheed and K. Thammasiri281In vitro shoot organogenesis in Anthurium andraeanum 'HC 028' - a highly valued cut-flower and potted ornamental plant S. Rittirat, S. Klaocheed and K. Thammasiri291In vitro propagation of the genus Actinidia Lindl. Representatives O.I. Molkanova, I.L. Krakhmaleva and L.N. Konovalova301Axillary shoot growth of Phalaenopsis species in different types and concentrations of cytokinin in vitro D. Sukma, C. Merysa, I.P.W. Sanjaya, S. Sudarsono and M.T. Chan307Research in physiology and production315Effects of irrigation levels on growth and chemical constituents in Curcuma alismatifolia S. Ruamrungsri313Chemical composition analysis of essential oil from black gingers (Kaempferia parviflora) by gas chromatography-mass spectrometry (GC-MS) A. Wongpia, C. Samphunphuang, K. Pipithsangchan, W. Somprasong, S. Boonpradub, T. Luangsuphabool and K. Thammasiri323Assessment of IAA synthesis by endophytic bacteria in Vanda (Orchidaceae) W. Inkaewpuanghkan, C. Inkham, S. Ruamrungsri, Y. Chromkaew and K. Panjama Influence of edaphic conditions on the productivity of eastern persimmon E.S. Panyushkina, M.L. Novitsky, S.Y. Khokhlov, Y. Plugatar and A.P. Novitskaya334The effect of dehydration on the functional state of the leaf apparatus in some apricot (Prunus armeniaca L.) cultivars V. Korzin, S. Tsiupka, V. Plugatar and V. Tsiupka<	Preservation of sweet potato (<i>Ipomoea batatas</i>) using slow growth techniques for gene bank 265 <i>P. Sangkasa-ad, P. Wongchang, S. Bunmanop, P. Rukkid, P. Sudhishurnark,</i> <i>S. Dechakumpoo, P. Piriyavinit, T. Luangsuphabool, K. Pipithsangchan and</i> <i>K. Thammasiri</i>	5
tuberosa jack, for conservation in Thailand281S. Rittirat, S. Klaocheed and K. Thammasiri291In vitro shoot organogenesis in Anthurium andraeanum 'HC 028' - a highly valued cut-flower and potted ornamental plant291S. Rittirat, S. Klaocheed and K. Thammasiri291In vitro propagation of the genus Actinidia Lindl. Representatives O.I. Molkanova, I.L. Krakhmaleva and L.N. Konovalova301Axillary shoot growth of Phalaenopsis species in different types and concentrations of cytokini in vitro D. Sukma, C. Merysa, I.P.W. Sanjaya, S. Sudarsono and M.T. Chan307Research in physiology and production315Effects of irrigation levels on growth and chemical constituents in Curcuma alismatifolia C. Inkham, J. Julsrigival, S. Chansakaow, P. Hongpakdee, K. Panjama and S. Ruamrungsri313Chemical composition analysis of essential oil from black gingers (Kaempferia parviflora) by gas chromatography-mass spectrometry (GC-MS) A. Wongpia, C. Samphunphuang, K. Pipithsangchan, W. Somprasong, S. Boonpradub, T. Luangsuphabool and K. Thammasiri323Assessment of IAA synthesis by endophytic bacteria in Vanda (Orchidaceae) W. Inkaewpuangkham, C. Inkham, S. Ruamrungsri, Y. Chromkaew and K. Panjama339The effect of dehydration on the functional state of the leaf apparatus in some apricot (Prunus armeniaca L.) cultivars 	of an ornamental aquatic plant, Anubias barteri var. nana 273	3
valued cut-flower and potted ornamental plant291S. Rittirat, S. Klaocheed and K. Thammasiri301In vitro propagation of the genus Actinidia Lindl. Representatives301O.I. Molkanova, I.L. Krakhmaleva and L.N. Konovalova301Axillary shoot growth of Phalaenopsis species in different types and concentrations of cytokinin in vitro307D. Sukma, C. Merysa, I.P.W. Sanjaya, S. Sudarsono and M.T. Chan307Research in physiology and production315Effects of irrigation levels on growth and chemical constituents in Curcuma alismatifolia315C. Inkham, J. Julsrigival, S. Chansakaow, P. Hongpakdee, K. Panjama and S. Ruamrungsri323Chemical composition analysis of essential oil from black gingers (Kaempferia parviflora) by gas chromatography-mass spectrometry (GC-MS) A. Wongpia, C. Samphunphuang, K. Pipithsangchan, W. Somprasong, S. Boonpradub, T. Luangsuphabool and K. Thammasiri323Assessment of IAA synthesis by endophytic bacteria in Vanda (Orchidaceae) W. Inkaewpuangkham, C. Inkham, S. Ruamrungsri, Y. Chromkaew and K. Panjama339Influence of edaphic conditions on the productivity of eastern persimmon E.S. Panyushkina, M.L. Novitsky, S.Y. Khokhlov, Y. Plugatar and A.P. Novitskaya345The effect of dehydration on the functional state of the leaf apparatus in some apricot (Prunus armeniaca L.) cultivars V. Korzin, S. Tsiupka, Y. Plugatar and V. Tsiupka345	<i>tuberosa</i> Jack., for conservation in Thailand 281	1
O.I. Molkanova, I.L. Krakhmaleva and L.N. Konovalova307Axillary shoot growth of Phalaenopsis species in different types and concentrations of cytokinin in vitro D. Sukma, C. Merysa, I.P.W. Sanjaya, S. Sudarsono and M.T. Chan307Research in physiology and production315Effects of irrigation levels on growth and chemical constituents in Curcuma alismatifolia S. Ruamrungsri315C. Inkham, J. Julsrigival, S. Chansakaow, P. Hongpakdee, K. Panjama and S. Ruamrungsri323Chemical composition analysis of essential oil from black gingers (Kaempferia parviflora) by gas chromatography-mass spectrometry (GC-MS) A. Wongpia, C. Samphunphuang, K. Pipithsangchan, W. Somprasong, S. Boonpradub, T. Luangsuphabool and K. Thammasiri323Assessment of IAA synthesis by endophytic bacteria in Vanda (Orchidaceae) W. Inkaewpuangkham, C. Inkham, S. Ruamrungsri, Y. Chromkaew and K. Panjama339Influence of edaphic conditions on the productivity of eastern persimmon E.S. Panyushkina, M.L. Novitsky, S.Y. Khokhlov, Y. Plugatar and A.P. Novitskaya345The effect of dehydration on the functional state of the leaf apparatus in some apricot (Prunus armeniaca L.) cultivars V. Korzin, S. Tsiupka, Y. Plugatar and V. Tsiupka345Assessment of drought tolerance in some peach cultivars by chlorophyll fluorescence induction method353	valued cut-flower and potted ornamental plant 291	1
concentrations of cytokinin in vitro307D. Sukma, C. Merysa, I.P.W. Sanjaya, S. Sudarsono and M.T. Chan307Research in physiology and production315Effects of irrigation levels on growth and chemical constituents in Curcuma alismatifolia315C. Inkham, J. Julsrigival, S. Chansakaow, P. Hongpakdee, K. Panjama and S. Ruamrungsri315Chemical composition analysis of essential oil from black gingers (Kaempferia parviflora) by gas chromatography-mass spectrometry (GC-MS)323A. Wongpia, C. Samphunphuang, K. Pipithsangchan, W. Somprasong, S. Boonpradub, T. Luangsuphabool and K. Thammasiri331Assessment of IAA synthesis by endophytic bacteria in Vanda (Orchidaceae) W. Inkaewpuangkham, C. Inkham, S. Ruamrungsri, Y. Chromkaew and K. Panjama339Influence of edaphic conditions on the productivity of eastern persimmon E.S. Panyushkina, M.L. Novitsky, S.Y. Khokhlov, Y. Plugatar and A.P. Novitskaya339The effect of dehydration on the functional state of the leaf apparatus in some apricot (Prunus armeniaca L.) cultivars V. Korzin, S. Tsiupka, Y. Plugatar and V. Tsiupka345Assessment of drought tolerance in some peach cultivars by chlorophyll fluorescence induction method353		1
Effects of irrigation levels on growth and chemical constituents in Curcuma alismatifolia315C. Inkham, J. Julsrigival, S. Chansakaow, P. Hongpakdee, K. Panjama and S. Ruamrungsri315Chemical composition analysis of essential oil from black gingers (Kaempferia parviflora) by gas chromatography-mass spectrometry (GC-MS)323A. Wongpia, C. Samphunphuang, K. Pipithsangchan, W. Somprasong, S. Boonpradub, T. Luangsuphabool and K. Thammasiri323Assessment of IAA synthesis by endophytic bacteria in Vanda (Orchidaceae) W. Inkaewpuangkham, C. Inkham, S. Ruamrungsri, Y. Chromkaew and K. Panjama331Influence of edaphic conditions on the productivity of eastern persimmon E.S. Panyushkina, M.L. Novitsky, S.Y. Khokhlov, Y. Plugatar and A.P. Novitskaya339The effect of dehydration on the functional state of the leaf apparatus in some apricot (Prunus armeniaca L.) cultivars V. Korzin, S. Tsiupka, Y. Plugatar and V. Tsiupka345Assessment of drought tolerance in some peach cultivars by chlorophyll fluorescence induction method353	concentrations of cytokinin in vitro 307	7
alismatifolia315C. Inkham, J. Julsrigival, S. Chansakaow, P. Hongpakdee, K. Panjama and S. Ruamrungsri315Chemical composition analysis of essential oil from black gingers (Kaempferia parviflora) by gas chromatography-mass spectrometry (GC-MS) A. Wongpia, C. Samphunphuang, K. Pipithsangchan, W. Somprasong, S. Boonpradub, T. Luangsuphabool and K. Thammasiri323Assessment of IAA synthesis by endophytic bacteria in Vanda (Orchidaceae) W. Inkaewpuangkham, C. Inkham, S. Ruamrungsri, Y. Chromkaew and K. Panjama331Influence of edaphic conditions on the productivity of eastern persimmon E.S. Panyushkina, M.L. Novitsky, S.Y. Khokhlov, Y. Plugatar and A.P. Novitskaya339The effect of dehydration on the functional state of the leaf apparatus in some apricot (Prunus armeniaca L.) cultivars V. Korzin, S. Tsiupka, Y. Plugatar and V. Tsiupka345Assessment of drought tolerance in some peach cultivars by chlorophyll fluorescence induction method353	Research in physiology and production	
parviflora) by gas chromatography-mass spectrometry (GC-MS)323A. Wongpia, C. Samphunphuang, K. Pipithsangchan, W. Somprasong, S. Boonpradub, T. Luangsuphabool and K. Thammasiri321Assessment of IAA synthesis by endophytic bacteria in Vanda (Orchidaceae) W. Inkaewpuangkham, C. Inkham, S. Ruamrungsri, Y. Chromkaew and K. Panjama331Influence of edaphic conditions on the productivity of eastern persimmon E.S. Panyushkina, M.L. Novitsky, S.Y. Khokhlov, Y. Plugatar and A.P. Novitskaya339The effect of dehydration on the functional state of the leaf apparatus in some apricot (Prunus armeniaca L.) cultivars V. Korzin, S. Tsiupka, Y. Plugatar and V. Tsiupka345Assessment of drought tolerance in some peach cultivars by chlorophyll fluorescence induction method353	alismatifolia 315 C. Inkham, J. Julsrigival, S. Chansakaow, P. Hongpakdee, K. Panjama and	5
 W. Inkaewpuangkham, C. Inkham, S. Ruamrungsri, Y. Chromkaew and K. Panjama Influence of edaphic conditions on the productivity of eastern persimmon S. Panyushkina, M.L. Novitsky, S.Y. Khokhlov, Y. Plugatar and A.P. Novitskaya The effect of dehydration on the functional state of the leaf apparatus in some apricot (Prunus armeniaca L.) cultivars V. Korzin, S. Tsiupka, Y. Plugatar and V. Tsiupka Assessment of drought tolerance in some peach cultivars by chlorophyll fluorescence induction method 353 	parviflora) by gas chromatography-mass spectrometry (GC-MS) 323 A. Wongpia, C. Samphunphuang, K. Pipithsangchan, W. Somprasong,	3
 E.S. Panyushkina, M.L. Novitsky, S.Y. Khokhlov, Y. Plugatar and A.P. Novitskaya The effect of dehydration on the functional state of the leaf apparatus in some apricot (<i>Prunus armeniaca</i> L.) cultivars Y. Korzin, S. Tsiupka, Y. Plugatar and V. Tsiupka Assessment of drought tolerance in some peach cultivars by chlorophyll fluorescence induction method 353 		1
apricot (Prunus armeniaca L.) cultivars345V. Korzin, S. Tsiupka, Y. Plugatar and V. Tsiupka345Assessment of drought tolerance in some peach cultivars by chlorophyll353		9
fluorescence induction method 353	apricot (<i>Prunus armeniaca</i> L.) cultivars 345	5
	fluorescence induction method 353	3
Ex vitro acclimatization of Lavandula angustifolia Mill. plants363V. Tsiupka, I.V. Zhdanova, I.V. Bulavin, S. Tsiupka and I.V. Mitrofanova		3

Extending the vase life of cut chrysanthemum flowers with herbal extracts <i>I. Boondouylan and S. Kunyamee</i>	371
Photosynthetic activity of olive leaves before and after treatment with an experimental mixture of pesticides <i>V. Korzin, S. Tsiupka, Y. Plugatar, V. Tsiupka, E. Shoferistov and D. Korzh</i>	377
Evaluation of cannabinoid content in different cultivars of <i>Cannabis indica</i> L. <i>C. Lapjit and S. Kanokmedhakul</i>	383
Phytochemical and biological activities of extracts from <i>Impatiens sirindhorniae</i> Triboun & Suksathan <i>B. Nupan, J. Thipwong, S. Samala, K. Thammasiri and W. Rotchanajinda</i>	389
The influence of canopy on the amount of light under the canopy shade <i>S. Soontornyatara and S. Chochong</i>	399
Plant molecular research	
DNA barcoding and molecular systematics in genus <i>Coelogyne</i> Lindl. (<i>Orchidaceae</i>) J. Ramudu	407
Plant GARDEN: a portal website for accessing plant genome, DNA marker, and SNP information H. Ichihara, H. Hirakawa, A. Ghelfi, M. Kohara, M. Yamada, T. Tamura, A. Nakaya, Y. Nakamura, S. Shirasawa, E. Sugihara, S. Tabata and S. Isobe	415
Molecular phylogeny and DNA barcode regions efficacy for identification of the cultivar of <i>Capsicum annuum</i> L. in Thailand <i>T. Luangsuphabool, A. Wongpia, P. Sangkasa-ad, T.N. Nan, K. Pipithsangchan and</i> <i>K. Thammasiri</i>	419
Development of transient expression system for gene functional analysis in Setaria viridis R. Deewatthanawong, M. Kamoltham and N. Montri	429
Molecular genetic diversity of <i>Lavandula</i> × <i>intermedia</i> Emeric. ex Loisel. in the Nikita Botanical Garden's collection detected by microsatellite markers V. Tsiupka, I.V. Bulavin, O.A. Grebennikova, A.O. Emirsaliev, Yu.S. Khokhlov and I.V. Mitrofanova	435
Development of microsatellite markers for <i>Trema micrantha</i> , species of tropical America A.R.Q. Mélo, S.L.F. Ramos, G.M.G. Marques, G. Dequigiovanni, K.M. Formiga, J. da Silva Batista, R. Lopes, R.L.S. Marques and M.T.G. Lopes	443
Research in plant protection	
Simple preparation of the dried galangal (<i>Alpinia galanga</i>) in ethanol is effective to suppress <i>Curvularia</i> sp., which causes grain discoloration of rice (<i>Oryza sativa</i> 'Suphan Buri 2') <i>K.S. Win, R. Mongkol and M. Kanjanamaneesathian</i>	449

In vitro screening of crude extracts from plants against <i>Fusarium sacchari</i> and <i>Curvularia lunata</i> and testing the efficacy of a selected crude extract of <i>Alpinia galanga</i> against grain discoloration and other rice diseases in the fields <i>T.T. Win, M. Kanjanamaneesathian and R. Mongkol</i>	455
<i>Paenibacillus polymyxa</i> reduces leaf spot disease caused by <i>Cersocpora</i> sp. and has potential to promote growth in green oak lettuce (<i>Lactuca sativa</i> var. <i>crispa</i>) in the commercial hydroponic farm <i>R. Adhikari, S. Monkhung, R. Mongkol and M. Kanjanamaneesathian</i>	463
<i>Bacillus megaterium</i> promotes both growth of seedlings in the laboratory and nodulation of the yardlong bean (<i>Vigna unguiculata</i> subsp. <i>sesquipedalis</i>) in the pot under outdoor condition <i>P. Meetum, K.S. Win and M. Kanjanamaneesathian</i>	471
Plant host selection for spore production of <i>Glomas mosseae</i> R. Deewatthanawong, W. Bannajit, P. Deewatthanawong and K. Bunya-atichart	477
Management based on POLC framework to promote the adoption and use of beneficial bacterium <i>Bacillus megaterium</i> for growers in Thailand <i>D. Kanjanamaneesathian and M. Kanjanamaneesathian</i>	483
Evaluation of processing tomato cultivars for resistance against <i>Tomato yellow leaf curl Thailand virus</i> and high yield production <i>R. Darapan and C. Lapjit</i>	489

LIST OF AUTHORS

		T HALL I M	
Adhikari, R.	463	Jenjittikul, T.	67, 257
Agrawal, A.	29	Jenrob, Y.	139
Amore, T.	199	Jitsopakul, N.	139
Atiratana, T.	59	Julsrigival, J.	315
Bannajit, W.	477	Kaewdoung, A.	81
Bansal, S.	29	Kamoltham, M.	429
Benelli, C.	43	Kanjanamaneesathian, D.	483
Biasi, L.A.	191	Kanjanamaneesathian, M.	449, 455,
Bièvre, D.D.	173		463, 471, 483
Biraji, V.K.	5	Kanokmedhakul, S.	383
Boain, N.	51, 73	Kermanee, P.	67
Bonnart, R.M.	93	Khasim, S.M.	125, 157
Boondouylan, I.	371	Khokhlov, S.Y.	133, 339
Boonpradub, S.	323	Khokhlov, Yu.S.	435
Bubpato, S.	51	Klaharn, P.	167
Bulavin, I.V.	363, 435	Klaocheed, S.	227, 237, 245,
Bunmanop, S.	265	·	273, 281, 291
Bunya-atichart, K.	477	Kochaiphat, P.	59
Chan, M.T.	307	Kohara, M.	415
Chander, S.	29	Kongsri, S.	13
Chansakaow, S.	315	Kongton, K.	217
Chareonsap, P.P.	51, 217	Konovalova, L.N.	301
Chelombit, S.V.	181	Koroleva, O.V.	87
Chen, K.	93	Korzh, D.	377
Chochong, S.	399	Korzin, V.	147, 345, 377
Chromkaew, Y.	331	Kowasurat, S.	117, 513, 577
Chuenboonngarm, N.	257	Krakhmaleva, I.L.	301
Chuengpanya, R.	257	Kukusamude, C.	13
Chukiatman, P.	13	Kunyamee, S.	371
da Silva Batista, J.	443	La-ongsri, W.	13
	51,81	Lapjit, C.	383, 489
Dachakumpoo, S.	489		
Darapan, R.		Lesnikova-Sedoshenko, N.	
Dechakumpoo, S.	117, 265	Limtiyayotin, M.	13
Deewatthanawong, P.	477	Lopes, M.T.G.	443
Deewatthanawong, R.	429, 477	Lopes, R.	443
Dequigiovanni, G.	443	U	1, 265, 323, 419
Emirsaliev, A.O.	435	Maikaeo, L.	13
Formiga, K.M.	443	Malhotra, E.V.	29
Gaidamashvili, M.	43	Marques, G.M.G.	443
Ghelfi, A.	415	Marques, R.L.S.	443
Go, R.	207	Mathew, K.M.	21
Gorina, V.M.	147	Meetum, P.	471
Gowthami, R.	29	Melnikov, V.	133
Grebennikova, O.A.	435	Mélo, A.R.Q.	443
Gupta, S.	5, 29	Merysa, C.	307
Hasan, S.A.	157	Mesyats, N.	353
Hirakawa, H.	415	Mishanova, E.V.	87
Hongpakdee, P.	315	Mitrofanova, I.V.	181, 363, 435
Ichihara, H.	415	Mitrofanova, O.V.	181
Inkaewpuangkham, W.	331	Molkanova, O.I.	87, 301
Inkham, C.	315, 331	Mongkol, R.	449, 455, 463
Isobe, S.	415	Monkhung, S.	463
Ivanova, N.N.	181	Montri, N.	429

Muangkroot, A.	257	Shoferistov, E.	377
Nakamura, Y.	415	Singh, K.	29
Nakaya, A.	415	Smykov, A.	353
Nan, T.N.	419	Somprasong, W.	323
Narkprasert, D.	51	Songserm, A.	51, 117
Nopun, P.	67	Soontornyatara, S	5. 399
Novitskaya, A.P.	339	Srivastava, V.	29
Novitsky, M.L.	339	Sudarsono, S.	307
Nupan, B.	389	Sudhishurnark, P	. 265
Panis, B.	173	Sugihara, E.	415
Panjama, K.	315, 331	Sukma, D.	307
Panyushkina, E.S.	133, 339	Suksawat, J.	51
Pathomwichaiwat, T.	59	Suwannakong, Y.	217
Petchsri, S.	217	Swangpol, S.C.	67
Pipithsangchan, K.	51, 73, 81,	Swennen, R.	173
	117, 265, 323, 419	Tabata, S.	415
Piriyavinit, P.	117, 265	Tamura, T.	415
Piyasangcharoen, T.	257	Tan, S.H.	207
Plugatar, Y. 133	3, 147, 339, 345, 377	Thammasiri, K.	1, 51, 73, 81, 101,
Pongket, U.	139		111, 117, 139, 227, 237,
Pumisutapon, P.	167		245, 265, 273, 281, 291,
Puripunyavanich, V.	13		323, 389, 419
Ramos, S.L.F.	443	Thanasuttanithi,	D. 111
Ramudu, J.	125, 157, 407	Thipwong, J.	389
Ranjanan, R.	21	Thongteab, N.	257
Remashree, A.B.	21	Thongviang, R.	81
Rhee, J.	173	Traiperm, P.	59
Rittirat, S.	227, 237, 245, 273,	Tsiupka, S.	345, 353, 363, 377
	281, 291	Tsiupka, V.	345, 353, 363, 377, 435
Rodjanai, S.	117	Uy, J.N.	199
Rodpradit, S.	101, 167	Viboonjun, U.	59
Rosiers, E.	173	Volk, G.M.	93
Rotchanajinda, W.	217, 389	Wangpakapattan	awong, P. 101
Ruamrungsri, S.	315, 331	Wilms, H.	173
Rukkid, P.	117, 265	Win, K.S.	449, 471
Samala, S.	217, 389	Win, T.T.	455
Samphunphuang, C.	51, 73, 117, 323	Wongchang, P.	73, 117, 265
Sangkasa-ad, P.	117, 265, 419	Wongpia, A.	51, 73, 323, 419
Sanjaya, I.P.W.	307	Wongsawad, P.	101
Schuchovski, C.	191	Yamada, M.	415
Sharma, N.	29	Yenchon, S.	217
Shengji, P.	1	Zhdanova, I.V.	181, 363
Shirasawa, S.	415		

Management based on POLC framework to promote the adoption and use of beneficial bacterium *Bacillus megaterium* for growers in Thailand

D. Kanjanamaneesathian^{1,a} and M. Kanjanamaneesathian²

¹Faculty of Management Science, Silpakorn University, Phetchaburi IT campus, Cha-Am, Phetchaburi 76120, Thailand; ²Faculty of Animal Science and Agricultural Technology, Silpakorn University, Phetchaburi IT campus, Cha-Am, Phetchaburi 76120, Thailand.

Abstract

Empowering the groups of people and organizations involves 1) planning, 2) organizing, 3) leading, and 4) controlling. This four-step process is called POLC framework which will be applied to manage the group of growers in Thailand. There are four main stakeholders, such as target growers, local agricultural staffs, sub-district headmen, and researchers. In this study, there are nine target growers, three local agricultural staffs, two sub-district headmen, and four researchers who have participated in the project to promote the adoption and use of beneficial bacterium Bacillus megaterium in horticultural crops, such as vegetables and fruits, based on POLC management framework in two provinces, Uttaradit and Phetchaburi. A purposive sampling technique was used to select these nine growers. The interview was conducted using in-depth interview and focus group from January to December 2019. The data from the in-depth interview and the focus group were used to score the relative role of each stakeholder in the project and describe the key activities in which each stakeholder must carry out under POLC framework accordingly. Based on the score of relative role of each stakeholder, the target growers played the most active leading role. The score also corresponded with the number of the key activities. The local agricultural officers are the "change agent", while the researchers are the catalyst assisting the "change agent". The sub-district headmen are the facilitator of the project. For a project to succeed, there must be a common understanding of the plan, stakeholder roles, and approach to management of the process.

Keywords: management, POLC framework, *Bacillus megaterium*, fungal diseases in vegetable crops

INTRODUCTION

Thailand has gained foreign currency from exporting agricultural produce to the countries in the Asean Economic Community (AEC), Japan, People's Republic of China (PRC), the European Union, and USA with a surplus of the trade in agricultural commodity around \$ 5 billion dollars. The income from trading agricultural commodity with these partners signifies the importance of agricultural sector for Thailand. Agriculture is also the main source of labor force with around 30% from 6.4 households, working in this sector (Office of Agricultural Economics, 2019). Due to the significance of agriculture, major efforts have been made to improve the quality of production in agriculture.

The Department of Agriculture (DOA) and Department of Agriculture and Extension (DOAE), within the Ministry of Agriculture and Agricultural Cooperatives, are the main government agencies that advocate and introduce standard agricultural practices, such as good agricultural practice (GAP) and organic farming, to farmers in Thailand. GAP, which has been developed by the Food and Agriculture Organization (FAO) and universally adopted by many countries, is the practice that addresses the environmental, economic, and social sustainability of on-farm processes, together with the safety and quality of food and non-food

^aE-mail: kanjanamanee_d@su.ac.th

Acta Hortic. 1339. ISHS 2022. DOI 10.17660/ActaHortic.2022.1339.62 Proc. IX International Scientific and Practical Conference on Biotechnology as an Instrument for Plant Biodiversity Conservation Eds.: K. Thammasiri et al.

agricultural products (FAO, 2010).

One measure, that contributes to produce quality agricultural produces, is to replace hazardous chemical pesticides with beneficial microorganisms. There are several beneficial microorganisms which have the capacity to control plant pests, such as *Beauveria bassiana*, *Metarhizium anisopliae, Bacillus thuringiensis, Trichoderma harzianum*, and *Bacillus subtilis. B. bassiana, M. anisopliae,* and *Bacillus thuringiensis* have been recommended for controlling insect pests in fruits and vegetables (Warburton et al., 2002). *T. harzianum* and *Bacillus subtilis* have been applied to control plant diseases in rice, fruits, and vegetables (Maketon et al., 2008). Thai growers can gain access to the products of these beneficial microorganisms from DOA, DOAE, and the private companies (Maketon et al., 2008).

Bacillus megaterium, an effective antagonistic bacterium against plant diseases caused by fungal pathogens, has been promoted to growers in Uttaradit and Phetchaburi. The growers in these provinces have encountered various pests and they have adopted *B. megaterium* to control plant pests to produce their crops based on GAP. To advocate the growers to continue using this bacterium, the researchers and the local agricultural officers, in conjunction with the sub-district headmen, have adhered to the principles of management to implement the project. Four major functions of management, including planning, organizing, leading, and controlling (the POLC framework) (Carpenter et al., 2012) have been adopted by all stakeholders in both Uttaradit and Phetchaburi.

This study aimed to describe the activities of this project implemented under the POLC framework to manage the adoption and use of beneficial bacterium *B. megaterium* for growers in both provinces.

MATERIALS AND METHODS

The study area

The study was carried out in two provinces, such as Uttaradit and Phetchaburi in Thailand. Uttaradit is situated in the northern region of Thailand, bordering Lao People's Democratic Republic. Sirikit Dam is the main source of water for irrigation. In Uttaradit, the studies were focused in five growers (Table 1) in three Districts, such as Mueang, Pichai, and Thong Saen Khan. Two DOAE agricultural officers, each from Pichai and Thong Saen Khan, were the local staffs who engaged proactively in promoting the adoption and use of beneficial bacterium *B. megaterium* for growers in each district.

Location and Province	Number of growers	Number of crops (scientific name)
Mueang, Uttaradit	1	Yardlong bean (Vigna unguiculata)
	1	Mango (<i>Mangifera indica</i>)
	1	Coriander (Coriandrum sativum)
Pichai, Uttaradit	1	Yardlong bean (V. unguiculata)
Thong Saen Khan, Uttaradit	1	Yardlong bean (V. unguiculata)
Ban Lat, Phetchaburi	1	Water convolvulus (Ipomoea aquatica)
		Chinese kale (Brassica oleracea)
Cha-Am, Phetchaburi	1	Yardlong bean (V. unguiculata)
		Cucumber (Cucumis sativus)
Khao Yoi, Phetchaburi	1	Angled loofah (Luffa acutangula)
Tha Yang, Phetchaburi	1	Banana [Musa (AAA group) "Kluai Hom khiew"]
Total	9	8

Table 1. Location and details of crops in which the growers have used *B. megaterium*.

Phetchaburi is located in the western region of Thailand, bordering Myanmar in the west, and the Gulf of Thailand in the east. This province is located in an area where farmers can access irrigation water because of the availability of two dams (the Kaeng Krachan dam and the Phetchaburi dam). In Phetchaburi, the studies were focused on four growers (Table 1) in four districts, such as Ban Lat, Cha-Am, Khao Yoi, and Tha Yang. One agricultural officer

from National Farmers Council (NFC), Phetchaburi office communicated rigorously with these growers in promoting the adoption and use of beneficial bacterium *B. megaterium* for growers in each district.

Sampling, sample size, and stakeholders in POLC

A total of nine growers, who were registered with DOAE (Mueang, Pichai, and Thong Saen Khan, in Uttaradit and Ban Lat, Cha-Am, Khao Yoi, and Tha Yang, in Phetchaburi) in 2019-2020, were subjected to the interview used in this study. A purposive sampling technique was used to select these nine growers. The interview was conducted using in-depth interview and focus group from January to December 2019. There were three local agricultural staffs, two from Uttaradit and one from Phetchaburi, who participated in the project. Two local administrative staffs, one from Mueang, Uttaradit and one from Thong Saen Khan, Uttaradit, assisted in facilitating the meeting among all stakeholders. Four researchers, from Silpakorn University, Phetchaburi IT campus, provided knowledge about the bacterium and supplied the inoculum of *B. megaterium* to the local agricultural offices in Uttaradit and Phetchaburi. These 18 participants, representing four stakeholders, were subjected to the POLC framework of this project.

Data analysis

The primary data from the in-depth interview and the focus group was used to both score the relative role of each stakeholder in the project and describe the key activities in which each stakeholder must carry out under POLC framework accordingly.

Techniques associated with the production of *B. megaterium* to introduce to the participating growers and the local agricultural staffs

The simple technique to produce the fresh cells of *B. megaterium* (Kanjanamaneesathian and Meetum, 2017) is the key element to facilitate the adoption and use of beneficial bacterium *B. megaterium* for growers in this study. *B. megaterium* was recommended to culture in a translucent (20 L) plastic drinking water tank using a common household flavour enhancer (CHFE (Knorr brand, Unilever, Thailand)) as nutrient in a tank containing 10 L of clean drinking water. Ten mL of *B. megaterium*, as bacterial inoculum (1×10° CFU g⁻¹) supplied to the local agricultural offices by the researchers, were added to each tank. The culture was aerated using an aquarium air pump and the air tube entered the tank through a cotton wool plug to prevent contamination. The culture was incubated at room temperature (25-32°C) for 3 days until used by the growers.

This fresh cell culture of *B. megaterium*, which had been produced by the growers, was recommended to add to the clean water (v/v at 1:10 proportion) before the bacterial cell suspension was used to either soak the seeds or spray the crops to suppress plant diseases (Kanjanamaneesathian and Meetum, 2019; Kanjanamaneesathian and Nimanong, 2019).

Framework to manage the adoption and use of *B. megaterium* for growers

The POLC (planning, organizing, leading, and controlling) (Carpenter et al., 2012) framework was applied to manage the adoption and use of *B. megaterium* by growers in these two provinces.

Planning includes building proper mission and having a good vision. This step was done by the active discussion among the target growers, local agricultural staffs in each province, and the researchers, as well as the sub-district headmen. This is to ensure that the goals and objectives of the adoption and use of *B. megaterium* are accomplished.

Organizing involves the determination of responsibility among the target growers, local agricultural staffs, the sub-district headmen in each province, and the researchers. It also includes allocating financial resources and other logistics to ensure the accomplishment of objectives in promoting the adoption and use of this bacterium.

Leading involves the establishment of field trials to showcase the efficacy of *B. megaterium* to control plant pests and promote plant growth in the growers' farms. This step is to let the selected target growers to motivate the other neighboring growers to adopt and

use B. megaterium.

Controlling involves the activities to ensure that the growers comply with the recommendations given to them by both the local agricultural staffs in each province and the researchers on how to use the bacterium effectively. These growers should be empowered to continue using *B. megaterium* in producing their crops. The learning centers will be established in these farms whose owners will disseminate the knowledge about *B. megaterium* to other growers.

RESULTS AND DISCUSSION

The results of promoting the growers to adopt and use *B. megaterium* based on the POLC framework were presented (Table 2). Based on the score of relative role of each stakeholder, the target growers played the most active leading role in all components of the framework, followed by local agricultural officers, researchers, and sub-district headmen (Table 2). The score of relative role of each stakeholder also corresponded with the number of the key activities in which each stakeholder must carry out (Table 3). For instance, the target growers, who received 3+ in all components of the framework, must be responsible in carrying out at least five key activities for planning (P), organizing (O), and leading (L) and four key activities for controlling (C) (Table 3). This indicates that the target growers are willing to take risks and change their behaviors, by either partially or completely replacing the chemical pesticides with *B. megaterium*. The success of the project can be traced to specific single individuals or group who had an extra-ordinary impact on the project (Boettiger et al., 2017).

Table 2.	Score	of	relative	role	of	each	stakeholder	in	the	project	to	adopt	and	use	В.
	megat	erit	um based	l on P	OL	C fran	nework.								

	Component of framework						
Stakeholder	Planning (P)	Organizing (O)	Leading (L)	Controlling (C)			
	Relative role of each stakeholder ^a						
Target growers	+++	+++	+++	+++			
Local agricultural officers	+++	+++	++	+++			
Sub-district headmen	+	+	+	-			
Researchers	+++	+	++	++			

^a+++ indicates the most active leading role, ++ indicates the moderate role and + indicates the least role in each component of framework.

Although, the growers play a major leading role in adopting and using the bacterium, they must receive support from other stakeholders, such as the local agricultural officers, the sub-district headmen, and the researchers. The local agricultural officers, who received 3+ in three components (P,O,C) and 2+ in one component (L), can be identified as the "change agent". They are the staffs who interact actively and regularly with the growers and the growers trust them. As a result, they are capable of assisting the growers to adopt and use the innovation (Boettiger et al., 2017). Without this "change agent" as the stakeholder, it will be very difficult to achieve the goals and objectives of the project.

Likewise, achievement of the key tasks of local agricultural officers shall be attained when they receive collaboration from the other stakeholders, such as the target growers, subdistrict headmen, and researchers. Thus, the coordination, collaboration, and commitment among each stakeholder are the key issues in managing the adoption and use of *B. megaterium* in the farms. In addition, commitment from the DOAE and other agricultural agencies is required to ensure that there will be a policy and a practical plan to promote the use of *B. megaterium* in other provinces. With the political and financial support, this kind of project has a high likelihood of being implemented nationwide (Boettiger et al., 2017).

Stakeholder	Component of framework								
Stakeholder	Planning (P) Organizing (O) Leading (L) Controlling (C)								
Target Growers	 Make a decision to participate in the project Determine the type of the crops they will use the bacterium to control pests Determine when they will start growing crop Determine the size of the field plot used Determine the number of the growing seasons that they will use the bacterium 	 Prepare the fields for producing crops Prepare propagating materials (seeds/seedlings) Prepare farm equipment, fertilizers and pesticides Learn how to prepare and use the bacterium appropriately Prepare the equipment for applying the bacterium 	 Contact the local agricultural offices to acquire the bacterial culture Prepare the diluted bacterial suspension for use Apply the prepared bacterial suspension to the crops Assess the efficacy of the bacterial treatments Report the efficacy of the bacterial treatment to the local agricultural officers 	 Attend the focus group to conclude the project Volunteer to serve as local expert Establish the learning center to disseminate the knowledge Prepare to uptake other knowledge and technologies 					
Local agricultural officers	 Identify the target growers who will participate in the project Identify the target crops that will receive the bacterial treatment Update the junior staffs in the office about the project Prepare the facility in the office to cope with the production of the bacterial culture for the growers 	 Organizing the meeting to train the target growers Coordinate with the researchers to prepare the bacterial culture for the growers Coordinate with the growers Coordinate with the growers to determine the efficacy of the bacterial application Prepare the bacterial cultures for the target growers 	 Monitor and advise the growers who have used the bacterium Collect and send the samples of the treated crops to the researchers for evaluating the efficacy in the laboratory Prepare the facility in the office to cope with the increased demand of the bacterium 	 Facilitate the focus group Record the data about the growers, crops, how the bacterial suspension was applied and whether this application has any impacts to crops Compile the data about other growers who have come to receive the bacterial cultures for use but they do not directly participate in the project 					
Sub-district Headmen	 Facilitate the meeting and encourage the significant of producing crops based on GAP 	 Facilitate the meeting among the stakeholders Facilitate the training session 	Facilitate the meeting to showcase the efficacy of the bacterial application	None					
Researchers	 Layout the goals and the objectives of the project Prepare the timeline for the activities of the project from the beginning until the end Prepare the content for training about the application of the bacterium Coordinate the activities among all stakeholders such as the researchers in the laboratory, the local agricultural staffs and growers Prepare inoculum of the bacterium to deliver to local agricultural offices 	 Monitor the development of the project Check the purity of the bacterial culture 	 Visit the farms to provide technical advice to the growers Visit the local agricultural to learn about various issues associated with the production of the bacterial cultures for the growers Arrange the training to showcase the efficacy of the bacterial application 	 Discuss with other stakeholders on both positive and negative impacts of the bacterial application to crops Plan new research topics which address the shortcoming of the recent completed project 					

Table 3. Key activities in which each stakeholder must carry out under POLC framework.

The researcher acts as catalyze in assisting the "change agent" both to accelerate the uptake of adoption and to use of the bacterium by the growers. They worked on developing the simple technique to culture the bacterium (Kanjanamaneesathian and Meetum, 2017) at the local agricultural offices. With this simple technique and the liquid inoculum of the

bacterium, the local agricultural officers will produce the bacterial culture at the offices. The target growers will come to collect the bacterial culture and will use it to make the final bacterial cell suspension for use in their farms. The smooth and efficient workflow is another key issue which can impact the implementation of the project. Technically, the liquid bacterial inoculum (produced from the laboratory), the bacterial culture (prepared at the local agricultural offices), and the bacterial cell suspension (prepared by the target growers before use) must not be contaminated during the transportation, preparation, and use. If contamination occurs to the bacterium during these processes, the goals and objectives of the project will be in jeopardy.

Sub-district headmen played the least but significant role in the project. They acted as facilitator to bring together all stakeholders of the project. They may also play a part to bring attention of the officials at the departmental levels in the province to the project. With a role in local administration, they can communicate with other higher administrative levels that should support the project, both in kind and finance.

Finally, there must be a common understanding of the plan, stakeholder roles, and approach to management of the process (Boettiger et al., 2017) for the project to achieve its goal. With the POLC framework as a platform for managing the adoption and use of *B. megaterium*, the policy makers at either departmental or ministerial levels should be able to plan and direct appropriate resources to promote the use of other environmental friendly bioproducts nationwide.

CONCLUSIONS

A change in the behavior of the growers requires management over time. Empowering the groups of people and organizations involves 1) planning, 2) organizing, 3) leading, and 4) controlling. The POLC framework, which has been applied to manage the group of growers in Uttaradit and Phetchaburi, has been found to be satisfactory to manage the adoption and use of beneficial bacterium *B. megaterium* for growers in Thailand.

ACKNOWLEDGEMENTS

The authors would like to thank National Science and Technology Development Agency (NSTDA), Thailand for supporting this study. We also appreciate the assistance from heads of the Agricultural Office at Pichai and Thong Saen Khan, Uttaradit and staffs of the National Farmers Council (NFC) office, Phetchaburi, Thailand.

Literature cited

Boettiger, S., Denis, N., and Sanghvi, S. (2017). Successful agricultural transformations: six core elements of planning and delivery. https://www.mckinsey.com/industries/chemicals/our-insights/successful-agricultural-transformations-six-core-elements-of-planning-and-delivery (accessed April 2, 2020).

Carpenter, M., Bauer, T., and Erdogan, B. (2012). Management Principles v.1.0. http://www.lardbucket.org. (accessed April 2, 2020).

Food and Agriculture Organization. (2010). Good Agricultural Practices (GAP) on horticultural production for extension staff in Tanzania. http://www.fao.org/docrep/013/i1645e/i1645e00.pdf.

Kanjanamaneesathian, M., and Meetum, P. (2017). Efficacy of a simple liquid culture of *Bacillus megaterium* in suppressing grain discoloration disease of rice (*Oryza sativa*). N. Z. Plant Prot. *70*, 196–202 https://doi.org/10. 30843/nzpp.2017.70.49.

Kanjanamaneesathian, M., and Meetum, P. (2019). Comparison of aqueous seasoning cube solution and nutrient broth as culture media for production of the biocontrol agent, *Bacillus megaterium* in the laboratory, and for suppression of rice grain discolouration in the field. N. Z. Plant Prot. *72*, 205–212 https://doi.org/10.30843/nzpp. 2019.72.249.

Kanjanamaneesathian, M., and Nimanong, W. (2019). Paper-based inoculum of *Bacillus megaterium* and its usage to produce a simple culture of the bacterium for application. N. Z. Plant Prot. *72*, 195–204 https://doi.org/10. 30843/nzpp.2019.72.248.

Maketon, M., Apisitsantikul, J., and Siriraweekul, C. (2008). Greenhouse evaluation of *Bacillus subtilis* AP-01 and *Trichoderma harzianum* AP-001 in controlling tobacco diseases. Braz J Microbiol *39* (*2*), 296–300 https://doi.org/10.1590/S1517-83822008000200018. PubMed

Office of Agricultural Economics. (2019). http://impexp.oae.go.th/service (accessed April 2, 2020).

Warburton, H., Ketunuti, U., and Grzywacz, D. (2002). A survey of the supply, production and use of microbial pesticides in Thailand, NRI Report 2723 (Chatham: Natural Resources Institute, University of Greenwich), pp.100.

